Antonio Sorrentino, Monisha Sivasankaran, Tanja Vidakovic-Koch
{"title":"Demystifying Z-behavior of hydrogen in electrochemical CO2 reduction","authors":"Antonio Sorrentino, Monisha Sivasankaran, Tanja Vidakovic-Koch","doi":"10.1016/j.electacta.2024.145535","DOIUrl":null,"url":null,"abstract":"The Hydrogen Evolution Reaction (HER) occurs concurrently with the electrochemical CO<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.509ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -399.4 453.9 649.8\" width=\"1.054ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> Reduction Reaction (eCO2RR). Several studies on HER partial currents using silver-based catalysts in bicarbonate electrolytes have observed a peculiar phenomenon: HER currents initially increase, then decrease, and finally increase again with overpotential, a pattern we refer to as the “Z-shape behavior.” Although widely documented, the underlying mechanism responsible for this Z-shaped behavior in H<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.509ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -399.4 453.9 649.8\" width=\"1.054ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> partial currents remains unclear. Understanding this phenomenon is crucial, as it defines the potential region with high faradaic efficiency for CO production. Therefore, gaining insights into this mechanism and identifying the influencing parameters could enhance the efficiency of CO<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.509ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -399.4 453.9 649.8\" width=\"1.054ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> electrolysis and have practical applications. In this study, we provide a model-based analysis of experiments to elucidate the interplay of various processes contributing to this behavior. Our model integrates micro-kinetic and continuum approaches and considers two distinct kinetic mechanisms for HER proposed in the literature. We offer explanations for the Z-shaped behavior for both mechanisms, highlighting their differences and implications for model predictions. Additionally, we conduct a sensitivity analysis on various parameters related to kinetic and transport phenomena, aiding in the interpretation of experimental partial currents obtained with different electrolyte concentrations.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145535","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The Hydrogen Evolution Reaction (HER) occurs concurrently with the electrochemical CO Reduction Reaction (eCO2RR). Several studies on HER partial currents using silver-based catalysts in bicarbonate electrolytes have observed a peculiar phenomenon: HER currents initially increase, then decrease, and finally increase again with overpotential, a pattern we refer to as the “Z-shape behavior.” Although widely documented, the underlying mechanism responsible for this Z-shaped behavior in H partial currents remains unclear. Understanding this phenomenon is crucial, as it defines the potential region with high faradaic efficiency for CO production. Therefore, gaining insights into this mechanism and identifying the influencing parameters could enhance the efficiency of CO electrolysis and have practical applications. In this study, we provide a model-based analysis of experiments to elucidate the interplay of various processes contributing to this behavior. Our model integrates micro-kinetic and continuum approaches and considers two distinct kinetic mechanisms for HER proposed in the literature. We offer explanations for the Z-shaped behavior for both mechanisms, highlighting their differences and implications for model predictions. Additionally, we conduct a sensitivity analysis on various parameters related to kinetic and transport phenomena, aiding in the interpretation of experimental partial currents obtained with different electrolyte concentrations.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.