Coupled antimony and sulfur isotopic composition of stibnite as a window to the origin of Sb mineralization in epithermal systems (examples from the Kremnica and Zlatá Baňa deposits, Slovakia)

IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Mineralium Deposita Pub Date : 2024-12-26 DOI:10.1007/s00126-024-01333-9
Peter Koděra, Ryan Mathur, Degao Zhai, Rastislav Milovský, Pavel Bačo, Juraj Majzlan
{"title":"Coupled antimony and sulfur isotopic composition of stibnite as a window to the origin of Sb mineralization in epithermal systems (examples from the Kremnica and Zlatá Baňa deposits, Slovakia)","authors":"Peter Koděra, Ryan Mathur, Degao Zhai, Rastislav Milovský, Pavel Bačo, Juraj Majzlan","doi":"10.1007/s00126-024-01333-9","DOIUrl":null,"url":null,"abstract":"<p>Stibnite is a relatively common mineral in epithermal deposits, with little known about Sb transport and efficient stibnite precipitation. The famous Kremnica Au-Ag low-sulfidation deposit and Zlatá Baňa intermediate-sulfidation Pb-Zn-Cu-Au-Ag-Sb deposit are hosted in two different Neogene volcanic fields in Western Carpathians, Slovakia. In both deposits, stibnite-rich veins occur outside of major vein structures, accompanied by illite, illite/smectite, and kaolinite alteration, and affiliated to late-stage fluids (&lt; 2 wt% NaCl eq., &lt; 150 °C). Sulfur isotopic composition of stibnite and sulfides is different at both deposits, likely due to a different magmatic-hydrothermal evolution of the parental magmatic chambers in the Central and Eastern Slovak Volcanic Fields. The Sb isotopes (δ<sup>123</sup>Sb), however, show similar values and trends of gradual simultaneous increase with δ<sup>34</sup>S values, explained by a progressive precipitation of stibnite and its fractionation with the fluid. The data were modeled by two coupled Rayleigh fractionation models, (for Sb and for S), assuming a predominant Sb transport in HSb<sub>2</sub>S<sub>4</sub><sup>–</sup> with a variable amount of S species. Higher molality ratio m<sub>S</sub>/m<sub>Sb</sub> of fluids was found in Kremnica (~ 3–4) than in Zlatá Baňa (~ 2). At both deposits, the heaviest δ<sup>123</sup>Sb values are accompanied by a decrease in the δ<sup>34</sup>S values probably due to the commencement of pyrite/marcasite precipitation. According to thermodynamic models of solubility of Sb(III) complexes and observations from active geothermal fields, stibnite precipitation was triggered by temperature decrease accompanied by mixing with a mildly acidic fluid (pH 4–5) of a steam-heated CO<sub>2</sub>-rich condensate on margins and in the final stages of epithermal systems. The proposed model for the origin of stibnite-bearing veins in epithermal systems can be used for their better targeting and efficient mineral exploration.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"20 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-024-01333-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Stibnite is a relatively common mineral in epithermal deposits, with little known about Sb transport and efficient stibnite precipitation. The famous Kremnica Au-Ag low-sulfidation deposit and Zlatá Baňa intermediate-sulfidation Pb-Zn-Cu-Au-Ag-Sb deposit are hosted in two different Neogene volcanic fields in Western Carpathians, Slovakia. In both deposits, stibnite-rich veins occur outside of major vein structures, accompanied by illite, illite/smectite, and kaolinite alteration, and affiliated to late-stage fluids (< 2 wt% NaCl eq., < 150 °C). Sulfur isotopic composition of stibnite and sulfides is different at both deposits, likely due to a different magmatic-hydrothermal evolution of the parental magmatic chambers in the Central and Eastern Slovak Volcanic Fields. The Sb isotopes (δ123Sb), however, show similar values and trends of gradual simultaneous increase with δ34S values, explained by a progressive precipitation of stibnite and its fractionation with the fluid. The data were modeled by two coupled Rayleigh fractionation models, (for Sb and for S), assuming a predominant Sb transport in HSb2S4 with a variable amount of S species. Higher molality ratio mS/mSb of fluids was found in Kremnica (~ 3–4) than in Zlatá Baňa (~ 2). At both deposits, the heaviest δ123Sb values are accompanied by a decrease in the δ34S values probably due to the commencement of pyrite/marcasite precipitation. According to thermodynamic models of solubility of Sb(III) complexes and observations from active geothermal fields, stibnite precipitation was triggered by temperature decrease accompanied by mixing with a mildly acidic fluid (pH 4–5) of a steam-heated CO2-rich condensate on margins and in the final stages of epithermal systems. The proposed model for the origin of stibnite-bearing veins in epithermal systems can be used for their better targeting and efficient mineral exploration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mineralium Deposita
Mineralium Deposita 地学-地球化学与地球物理
CiteScore
11.00
自引率
6.20%
发文量
61
审稿时长
6 months
期刊介绍: The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.
期刊最新文献
Textural, mineralogical, and geochemical evidence for apatite metasomatism and REE mobility within the Corvo orebody at the Neves Corvo Cu-Zn-Pb(-Sn) deposit (Iberian Pyrite Belt) The sulfur isotope evolution of the Duobuza Cu-Au porphyry deposit in the Duolong district, Central Tibet, China Ore and gangue mineral textures, fluid inclusions, mesoscopically structured quartz and pyrite, and their bearing on the genesis of hydrothermal breccias in the low-sulfidation Surnak gold deposit, SE Bulgaria Trace element distributions among Cu-(Fe)-sulfides from the Olympic Dam Cu-U-Au-Ag deposit, South Australia Polymetallic vein formation through fluid flashing at the Sunnyside intermediate-sulfidation epithermal deposit, Colorado, USA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1