{"title":"Decoupling the electronic gap from the spin Chern number in spin-resolved topological insulators","authors":"Alexander C. Tyner, Cormac Grindall, J. H. Pixley","doi":"10.1103/physrevb.110.214211","DOIUrl":null,"url":null,"abstract":"In two-dimensional topological insulators, a disorder-induced topological phase transition is typically identified with an Anderson localization transition at the Fermi energy. However, in Z</a:mi>2</a:mn></a:msub></a:math> trivial, spin-resolved topological insulators it is the spectral gap of the spin spectrum, in addition to the bulk mobility gap, which protects the nontrivial topology of the ground state. In this work, we show that these two gaps, the bulk electronic and spin gap, can evolve distinctly on the introduction of quenched short-ranged disorder and that an odd-quantized spin Chern number topologically protects states below the Fermi energy from localization. This decoupling leads to a unique situation in which an Anderson localization transition occurs below the Fermi energy at the topological transition. Furthermore, the presence of topologically protected extended bulk states nontrivial bulk topology typically implies the existence of protected boundary modes. We demonstrate the absence of protected boundary modes in the Hamiltonian and yet the edge modes in the eigenstates of the projected spin operator survive. Our work thus provides evidence that a nonzero spin-Chern number, in the absence of a nontrivial <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:msub><c:mi mathvariant=\"double-struck\">Z</c:mi><c:mn>2</c:mn></c:msub></c:math> index, does not demand the existence of protected boundary modes at finite or zero energy. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"4 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.214211","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In two-dimensional topological insulators, a disorder-induced topological phase transition is typically identified with an Anderson localization transition at the Fermi energy. However, in Z2 trivial, spin-resolved topological insulators it is the spectral gap of the spin spectrum, in addition to the bulk mobility gap, which protects the nontrivial topology of the ground state. In this work, we show that these two gaps, the bulk electronic and spin gap, can evolve distinctly on the introduction of quenched short-ranged disorder and that an odd-quantized spin Chern number topologically protects states below the Fermi energy from localization. This decoupling leads to a unique situation in which an Anderson localization transition occurs below the Fermi energy at the topological transition. Furthermore, the presence of topologically protected extended bulk states nontrivial bulk topology typically implies the existence of protected boundary modes. We demonstrate the absence of protected boundary modes in the Hamiltonian and yet the edge modes in the eigenstates of the projected spin operator survive. Our work thus provides evidence that a nonzero spin-Chern number, in the absence of a nontrivial Z2 index, does not demand the existence of protected boundary modes at finite or zero energy. Published by the American Physical Society2024
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter