V. Porée, D. J. Gawryluk, T. Shang, J. A. Rodríguez-Velamazań, N. Casati, D. Sheptyakov, X. Torrelles, M. Medarde
{"title":"YBa1−xSrxCuFeO5 layered perovskites: An attempt to explore the magnetic order beyond the paramagnetic-collinear-spiral triple point","authors":"V. Porée, D. J. Gawryluk, T. Shang, J. A. Rodríguez-Velamazań, N. Casati, D. Sheptyakov, X. Torrelles, M. Medarde","doi":"10.1103/physrevb.110.235156","DOIUrl":null,"url":null,"abstract":"Layered perovskites of general formula AA'CuFeO</a:mi>5</a:mn></a:msub></a:math> are characterized by the presence of spiral magnetic phases whose ordering temperatures <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:msub><b:mi>T</b:mi><b:mi>spiral</b:mi></b:msub></b:math> can be tuned far beyond room temperature by introducing modest amounts of Cu/Fe chemical disorder in the crystal structure. This rare property makes these materials prominent candidates to host multiferroicity and magnetoelectric coupling at temperatures suitable for applications. Moreover, it has been proposed that the highest <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:msub><c:mi>T</c:mi><c:mi>spiral</c:mi></c:msub></c:math> value that can be reached in this structural family (<d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"><d:mo>∼</d:mo><d:mn>400</d:mn></d:math> K) corresponds to a paramagnetic-collinear-spiral triple point with potential to show exotic physics. Since generating high amounts of Cu/Fe disorder is experimentally difficult, the phase diagram region beyond the triple point has been barely explored. To fill this gap we investigate here eleven <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:mrow><e:msub><e:mi>YBa</e:mi><e:mrow><e:mn>1</e:mn><e:mo>−</e:mo><e:mi>x</e:mi></e:mrow></e:msub><e:msub><e:mi>Sr</e:mi><e:mi>x</e:mi></e:msub><e:msub><e:mi>CuFeO</e:mi><e:mn>5</e:mn></e:msub></e:mrow></e:math> solid solutions (<f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:mrow><f:mn>0</f:mn><f:mo>≤</f:mo><f:mi>x</f:mi><f:mo>≤</f:mo><f:mn>1</f:mn></f:mrow></f:math> ), where we replace Ba with Sr with the aim of enhancing the impact of the experimentally available Cu/Fe disorder. Using a combination of bulk magnetization measurements, synchrotron x-ray and neutron powder diffraction we show that the spiral state with <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mrow><g:msub><g:mi mathvariant=\"bold\">k</g:mi><g:mi>s</g:mi></g:msub><g:mo>=</g:mo><g:mrow><g:mo>(</g:mo><g:mfrac><g:mn>1</g:mn><g:mn>2</g:mn></g:mfrac><g:mo>,</g:mo><g:mfrac><g:mn>1</g:mn><g:mn>2</g:mn></g:mfrac><g:mo>,</g:mo><g:mfrac><g:mn>1</g:mn><g:mn>2</g:mn></g:mfrac><g:mo>±</g:mo><g:mi mathvariant=\"italic\">q</g:mi><g:mo>)</g:mo></g:mrow></g:mrow></g:math> is destabilized beyond a critical Sr content, being replaced by a fully antiferromagnetic state with ordering temperature <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"><j:mrow><j:msub><j:mi>T</j:mi><j:mrow><j:mi>coll</j:mi><j:mn>2</j:mn></j:mrow></j:msub><j:mo>≥</j:mo><j:msub><j:mi>T</j:mi><j:mi>spiral</j:mi></j:msub></j:mrow></j:math> and propagation vector <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\"><k:mrow><k:msub><k:mi mathvariant=\"bold\">k</k:mi><k:mrow><k:mi>c</k:mi><k:mn>2</k:mn></k:mrow></k:msub><k:mo>=</k:mo><k:mrow><k:mo>(</k:mo><k:mfrac><k:mn>1</k:mn><k:mn>2</k:mn></k:mfrac><k:mo>,</k:mo><k:mfrac><k:mn>1</k:mn><k:mn>2</k:mn></k:mfrac><k:mo>,</k:mo><k:mn>0</k:mn><k:mo>)</k:mo></k:mrow></k:mrow></k:math>. Interestingly, both <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:msub><m:mi>T</m:mi><m:mi>spiral</m:mi></m:msub></m:math> and <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\"><n:msub><n:mi>T</n:mi><n:mrow><n:mi>coll</n:mi><n:mn>2</n:mn></n:mrow></n:msub></n:math> increase with <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\"><o:mi>x</o:mi></o:math> with comparable rates. This suggests a common, disorder-driven origin for both magnetic phases, consistent with theoretical predictions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"20 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.235156","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Layered perovskites of general formula AA'CuFeO5 are characterized by the presence of spiral magnetic phases whose ordering temperatures Tspiral can be tuned far beyond room temperature by introducing modest amounts of Cu/Fe chemical disorder in the crystal structure. This rare property makes these materials prominent candidates to host multiferroicity and magnetoelectric coupling at temperatures suitable for applications. Moreover, it has been proposed that the highest Tspiral value that can be reached in this structural family (∼400 K) corresponds to a paramagnetic-collinear-spiral triple point with potential to show exotic physics. Since generating high amounts of Cu/Fe disorder is experimentally difficult, the phase diagram region beyond the triple point has been barely explored. To fill this gap we investigate here eleven YBa1−xSrxCuFeO5 solid solutions (0≤x≤1 ), where we replace Ba with Sr with the aim of enhancing the impact of the experimentally available Cu/Fe disorder. Using a combination of bulk magnetization measurements, synchrotron x-ray and neutron powder diffraction we show that the spiral state with ks=(12,12,12±q) is destabilized beyond a critical Sr content, being replaced by a fully antiferromagnetic state with ordering temperature Tcoll2≥Tspiral and propagation vector kc2=(12,12,0). Interestingly, both Tspiral and Tcoll2 increase with x with comparable rates. This suggests a common, disorder-driven origin for both magnetic phases, consistent with theoretical predictions. Published by the American Physical Society2024
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter