Ferritinophagy promotes microglia ferroptosis to aggravate neuroinflammation induced by cerebral ischemia-reperfusion injury via activation of the cGAS-STING signaling pathway.
{"title":"Ferritinophagy promotes microglia ferroptosis to aggravate neuroinflammation induced by cerebral ischemia-reperfusion injury via activation of the cGAS-STING signaling pathway.","authors":"Haijing Sui, Zhenyu Sun, Chang Liu, Hongjie Xi","doi":"10.1016/j.neuint.2024.105920","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral ischemia-reperfusion injury (CIRI) is a common and serious complication of reperfusion therapy in patients with ischemic stroke (IS). The regulation of microglia-mediated neuroinflammation to control CIRI has garnered considerable attention. The balance of iron metabolism is key to maintaining the physiological functions of microglia. Nuclear Receptor Coactivator 4 (NCOA4)-mediated ferritinophagy, an important pathway in regulating iron metabolism, is a promising intervention target. However, studies on the impacts of ferritinophagy on microglia-mediated neuroinflammation are lacking. This study aimed to identify potential treatments for CIRI-induced neuroinflammation by focusing on ferritinophagy and the specific mechanisms whereby iron metabolism regulates microglia-mediated neuroinflammation. CIRI induced the activation of ferritinophagy in microglia, characterized by the upregulation of NCOA4, downregulation of Ferritin Heavy Chain 1 (FTH1), and increased intracellular iron levels. This activation contributes to increased ferroptosis, oxidative stress, and the release of inflammatory factors. Silencing NCOA4 or application of the ferroptosis-specific inhibitor Ferrostatin-1 (Fer-1) effectively suppressed the CIRI-induced damage in vivo and in vitro. While Fer-1 addition did not inhibit the CIRI-activated ferritinophagy, it did partially reverse the alleviation of NCOA4 depletion-induced neuroinflammation, suggesting that ferroptosis is an essential intermediate step in ferritinophagy-induced neuroinflammatory damage. Furthermore, using IS-related transcriptomic data, the cGAS-STING pathway was identified as a crucial mechanism connecting ferritinophagy and ferroptosis. Specific inhibition of the cGAS-STING pathway reduced ferritinophagy-induced ferroptosis and neuroinflammation. In summary, our results indicated that ferritinophagy activates the cGAS-STING signaling pathway, which promotes the inflammatory response and oxidative stress in microglia in a ferroptosis-dependent manner, thereby exacerbating CIRI-induced neuroinflammation. These findings provide theoretical support for the clinical treatment of CIRI.</p>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":" ","pages":"105920"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuint.2024.105920","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a common and serious complication of reperfusion therapy in patients with ischemic stroke (IS). The regulation of microglia-mediated neuroinflammation to control CIRI has garnered considerable attention. The balance of iron metabolism is key to maintaining the physiological functions of microglia. Nuclear Receptor Coactivator 4 (NCOA4)-mediated ferritinophagy, an important pathway in regulating iron metabolism, is a promising intervention target. However, studies on the impacts of ferritinophagy on microglia-mediated neuroinflammation are lacking. This study aimed to identify potential treatments for CIRI-induced neuroinflammation by focusing on ferritinophagy and the specific mechanisms whereby iron metabolism regulates microglia-mediated neuroinflammation. CIRI induced the activation of ferritinophagy in microglia, characterized by the upregulation of NCOA4, downregulation of Ferritin Heavy Chain 1 (FTH1), and increased intracellular iron levels. This activation contributes to increased ferroptosis, oxidative stress, and the release of inflammatory factors. Silencing NCOA4 or application of the ferroptosis-specific inhibitor Ferrostatin-1 (Fer-1) effectively suppressed the CIRI-induced damage in vivo and in vitro. While Fer-1 addition did not inhibit the CIRI-activated ferritinophagy, it did partially reverse the alleviation of NCOA4 depletion-induced neuroinflammation, suggesting that ferroptosis is an essential intermediate step in ferritinophagy-induced neuroinflammatory damage. Furthermore, using IS-related transcriptomic data, the cGAS-STING pathway was identified as a crucial mechanism connecting ferritinophagy and ferroptosis. Specific inhibition of the cGAS-STING pathway reduced ferritinophagy-induced ferroptosis and neuroinflammation. In summary, our results indicated that ferritinophagy activates the cGAS-STING signaling pathway, which promotes the inflammatory response and oxidative stress in microglia in a ferroptosis-dependent manner, thereby exacerbating CIRI-induced neuroinflammation. These findings provide theoretical support for the clinical treatment of CIRI.
期刊介绍:
Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.