{"title":"Fucosyltransferase 4 upregulates P-gp expression for chemoresistance via NF-κB signaling pathway.","authors":"Zixuan Cai, Tomoya Isaji, Caixia Liang, Tomohiko Fukuda, Dongmei Zhang, Jianguo Gu","doi":"10.1016/j.bbagen.2024.130753","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Multidrug resistance (MDR) poses a significant obstacle to developing chemotherapeutic treatments. In previous studies using a traditional model of adriamycin resistance (ADR) with K562 cells, we demonstrated that N-acetylglucosaminyltransferase III (GnT-III) expression negatively regulates chemoresistance. Additionally, we observed that fucosylation levels were increased in the ADR cells.</p><p><strong>Method: </strong>Fucosylation levels were determined using lectin blot, western blot, and flow cytometry. Gene expression levels were analyzed via qPCR. We generated a FUT4 knockout (KO) ADR cell line using CRISPR/Cas9 technology. Cytotoxicity and drug efflux assays were conducted to evaluate chemotherapy tolerance.</p><p><strong>Results: </strong>The expression levels of FUT4 and its products, the Le<sup>X</sup> antigens, were significantly upregulated in the ADR cells compared to the parental K562 cells. The FUT4 KO reduced the elevated levels of P-glycoprotein (P-gp) found in ADR cells and exhibited increased sensitivity to chemotherapeutic drugs. Furthermore, restoring FUT4 expression in the KO cells effectively reversed P-gp expression, drug efflux, and chemoresistance. Given the critical role of the NF-κB pathway in P-gp expression, we investigated NF-κB signaling and found that the phosphorylation levels of p65 were significantly increased in the ADR cells but were downregulated in the FUT4 KO cells. Furthermore, the restoration of FUT4 rescued the phosphorylation levels of p65.</p><p><strong>Conclusions: </strong>FUT4 specifically upregulates P-gp expression related to chemoresistance through the NF-κB signaling pathway.</p><p><strong>General significance: </strong>This study highlights the importance of FUT4 in chemoresistance and suggests it may serve as a promising target for combating MDR.</p>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":" ","pages":"130753"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbagen.2024.130753","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Multidrug resistance (MDR) poses a significant obstacle to developing chemotherapeutic treatments. In previous studies using a traditional model of adriamycin resistance (ADR) with K562 cells, we demonstrated that N-acetylglucosaminyltransferase III (GnT-III) expression negatively regulates chemoresistance. Additionally, we observed that fucosylation levels were increased in the ADR cells.
Method: Fucosylation levels were determined using lectin blot, western blot, and flow cytometry. Gene expression levels were analyzed via qPCR. We generated a FUT4 knockout (KO) ADR cell line using CRISPR/Cas9 technology. Cytotoxicity and drug efflux assays were conducted to evaluate chemotherapy tolerance.
Results: The expression levels of FUT4 and its products, the LeX antigens, were significantly upregulated in the ADR cells compared to the parental K562 cells. The FUT4 KO reduced the elevated levels of P-glycoprotein (P-gp) found in ADR cells and exhibited increased sensitivity to chemotherapeutic drugs. Furthermore, restoring FUT4 expression in the KO cells effectively reversed P-gp expression, drug efflux, and chemoresistance. Given the critical role of the NF-κB pathway in P-gp expression, we investigated NF-κB signaling and found that the phosphorylation levels of p65 were significantly increased in the ADR cells but were downregulated in the FUT4 KO cells. Furthermore, the restoration of FUT4 rescued the phosphorylation levels of p65.
Conclusions: FUT4 specifically upregulates P-gp expression related to chemoresistance through the NF-κB signaling pathway.
General significance: This study highlights the importance of FUT4 in chemoresistance and suggests it may serve as a promising target for combating MDR.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.