Analysis of lipids by Raman spectroscopy and mass spectrometry provides a detection tool and mechanistic insight into imatinib resistance in CML-BC.

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. General subjects Pub Date : 2025-02-10 DOI:10.1016/j.bbagen.2025.130771
Manish Bhat, Panchali Saha, Mythreyi Narasimhan, Ashutosh Shelar, Arti Hole, C Murali Krishna, Rukmini Govekar
{"title":"Analysis of lipids by Raman spectroscopy and mass spectrometry provides a detection tool and mechanistic insight into imatinib resistance in CML-BC.","authors":"Manish Bhat, Panchali Saha, Mythreyi Narasimhan, Ashutosh Shelar, Arti Hole, C Murali Krishna, Rukmini Govekar","doi":"10.1016/j.bbagen.2025.130771","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance to tyrosine kinase inhibitors (TKIs) is a major challenge in the treatment of chronic myeloid leukemia (CML). Established tests based on the known mechanisms of resistance in the initial chronic phase (CP) confirm resistance, reveal the underlying reason and thereby direct treatment modifications. In the terminal phase of blast crisis (BC), however, additional partially identified mechanisms of resistance exist which necessitates developing modalities to detect resistance regardless of the underlying mechanism and concurrent exploration of the resistance mechanism to assist in identification of appropriate drug targets. In this study both the clinical objectives were achieved by analysing lipids in BC cells, sensitive and resistant to TKIs, using the complementary strengths of distinct analytical technologies. Raman spectroscopy, through the spectral signatures with lipids as a significant differentiating component could segregate resistant from sensitive cells in the Principal Component Analysis (PCA) and Principal Component based Linear Discriminant Analysis (PC-LDA). This provided a tool to rapidly detect resistance in CML-BC despite unclear mechanism of TKI resistance. The depth of coverage achievable by mass spectrometry allowed the generation of quantitative differential profile of individual lipids in resistant cells. The alterations were in diverse classes of lipids which are involved in cell signalling and inhibition studies could link these alterations to modulation of phospholipase A<sub>2</sub> (PLA<sub>2</sub>) levels mediated by p38 mitogen activated protein kinase (p38MAPK), which is causally associated with TKI resistance in CML-BC. Together, lipid analysis using the two platforms, contributed to the detection and mechanistic understanding of imatinib resistance in CML-BC.</p>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":" ","pages":"130771"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbagen.2025.130771","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Resistance to tyrosine kinase inhibitors (TKIs) is a major challenge in the treatment of chronic myeloid leukemia (CML). Established tests based on the known mechanisms of resistance in the initial chronic phase (CP) confirm resistance, reveal the underlying reason and thereby direct treatment modifications. In the terminal phase of blast crisis (BC), however, additional partially identified mechanisms of resistance exist which necessitates developing modalities to detect resistance regardless of the underlying mechanism and concurrent exploration of the resistance mechanism to assist in identification of appropriate drug targets. In this study both the clinical objectives were achieved by analysing lipids in BC cells, sensitive and resistant to TKIs, using the complementary strengths of distinct analytical technologies. Raman spectroscopy, through the spectral signatures with lipids as a significant differentiating component could segregate resistant from sensitive cells in the Principal Component Analysis (PCA) and Principal Component based Linear Discriminant Analysis (PC-LDA). This provided a tool to rapidly detect resistance in CML-BC despite unclear mechanism of TKI resistance. The depth of coverage achievable by mass spectrometry allowed the generation of quantitative differential profile of individual lipids in resistant cells. The alterations were in diverse classes of lipids which are involved in cell signalling and inhibition studies could link these alterations to modulation of phospholipase A2 (PLA2) levels mediated by p38 mitogen activated protein kinase (p38MAPK), which is causally associated with TKI resistance in CML-BC. Together, lipid analysis using the two platforms, contributed to the detection and mechanistic understanding of imatinib resistance in CML-BC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochimica et biophysica acta. General subjects
Biochimica et biophysica acta. General subjects 生物-生化与分子生物学
CiteScore
6.40
自引率
0.00%
发文量
139
审稿时长
30 days
期刊介绍: BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.
期刊最新文献
Analysis of lipids by Raman spectroscopy and mass spectrometry provides a detection tool and mechanistic insight into imatinib resistance in CML-BC. Evaluating lactate metabolism for prognostic assessment and therapy response prediction in gastric cancer with emphasis on the oncogenic role of SLC5A12 Reduction in MCP-1 production in preadipocytes is mediated by PPARγ activation and JNK/SIRT1 signaling High dose of ascorbic acid induces selective cell growth inhibition and cell death in human gastric signet-ring cell carcinoma-derived NUGC-4 cells Computational analysis of the alpha−2 domain of apolipoprotein B − 100, a potential triggering factor in LDL aggregation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1