Memory-Non-Linearity Trade-Off in Distance-Based Delay Networks.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2024-12-11 DOI:10.3390/biomimetics9120755
Stefan Iacob, Joni Dambre
{"title":"Memory-Non-Linearity Trade-Off in Distance-Based Delay Networks.","authors":"Stefan Iacob, Joni Dambre","doi":"10.3390/biomimetics9120755","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of echo state networks (ESNs) in temporal pattern learning tasks depends both on their memory capacity (MC) and their non-linear processing. It has been shown that linear memory capacity is maximized when ESN neurons have linear activation, and that a trade-off between non-linearity and linear memory capacity is required for temporal pattern learning tasks. The more recent distance-based delay networks (DDNs) have shown improved memory capacity over ESNs in several benchmark temporal pattern learning tasks. However, it has not thus far been studied whether this increased memory capacity comes at the cost of reduced non-linear processing. In this paper, we advance the hypothesis that DDNs in fact achieve a better trade-off between linear MC and non-linearity than ESNs, by showing that DDNs can have strong non-linearity with large memory spans. We tested this hypothesis using the NARMA-30 task and the bitwise delayed XOR task, two commonly used reservoir benchmark tasks that require a high degree of both non-linearity and memory.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672939/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9120755","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of echo state networks (ESNs) in temporal pattern learning tasks depends both on their memory capacity (MC) and their non-linear processing. It has been shown that linear memory capacity is maximized when ESN neurons have linear activation, and that a trade-off between non-linearity and linear memory capacity is required for temporal pattern learning tasks. The more recent distance-based delay networks (DDNs) have shown improved memory capacity over ESNs in several benchmark temporal pattern learning tasks. However, it has not thus far been studied whether this increased memory capacity comes at the cost of reduced non-linear processing. In this paper, we advance the hypothesis that DDNs in fact achieve a better trade-off between linear MC and non-linearity than ESNs, by showing that DDNs can have strong non-linearity with large memory spans. We tested this hypothesis using the NARMA-30 task and the bitwise delayed XOR task, two commonly used reservoir benchmark tasks that require a high degree of both non-linearity and memory.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于距离的延迟网络中的记忆-非线性权衡。
回声状态网络(ESNs)在时间模式学习任务中的表现既取决于其记忆容量(MC),也取决于其非线性处理。已有研究表明,当回声状态网络神经元具有线性激活时,线性记忆容量最大化,并且在时间模式学习任务中需要在非线性和线性记忆容量之间进行权衡。最近的基于距离的延迟网络(DDNs)在几个基准时间模式学习任务中显示出比ESNs更好的记忆容量。然而,到目前为止还没有研究这种增加的记忆容量是否以减少非线性处理为代价。在本文中,我们提出了一个假设,即DDNs实际上比ESNs在线性MC和非线性之间实现了更好的权衡,通过证明DDNs可以在大的存储跨度下具有强的非线性。我们使用NARMA-30任务和位延迟异或任务来验证这一假设,这两种常用的油藏基准任务都需要高度的非线性和内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Evaluation of Internal and Marginal Accuracy (Trueness and Precision) of Laminates Using DLP Printing and Milling Methods. Bone Marrow Stromal Cells Generate a Pro-Healing Inflammasome When Cultured on Titanium-Aluminum-Vanadium Surfaces with Microscale/Nanoscale Structural Features. Medial Patellofemoral Ligament Repair with Suture Tape Augmentation Can Yield Good Midterm Clinical Outcomes Regardless of Skeletal Maturity and Joint Laxity. Segment, Compare, and Learn: Creating Movement Libraries of Complex Task for Learning from Demonstration. Bionic Modeling Study on the Landing Mechanism of Flapping Wing Robot Based on the Thoracic Legs of Purple Stem Beetle, Sagra femorata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1