Effects of Nicotine on the Thermodynamics and Phase Coexistence of Pulmonary Surfactant Model Membranes.

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL Membranes Pub Date : 2024-12-11 DOI:10.3390/membranes14120267
Fadi S S Magalhães, Ernanni D Vieira, Mariana R B Batista, Antonio J Costa-Filho, Luis G M Basso
{"title":"Effects of Nicotine on the Thermodynamics and Phase Coexistence of Pulmonary Surfactant Model Membranes.","authors":"Fadi S S Magalhães, Ernanni D Vieira, Mariana R B Batista, Antonio J Costa-Filho, Luis G M Basso","doi":"10.3390/membranes14120267","DOIUrl":null,"url":null,"abstract":"<p><p>Phase separation is essential for membrane function, and alterations in phase coexistence by membrane-interacting molecules, such as nicotine, can impair membrane stability. With the increasing use of e-cigarettes, concerns have arisen about the impact of nicotine on pulmonary surfactants. Here, we used differential scanning calorimetry (DSC), molecular dynamics (MD) simulations, and electron spin resonance (ESR) to examine nicotine's effect on the phase coexistence of two surfactant models: pure DPPC and a DPPC/POPC/POPG mixture. Our DSC analysis revealed that nicotine interacts with both membranes, increasing enthalpy and entropy change during the phase transition. ESR revealed that nicotine affects membrane fluidity and packing of DPPC more effectively than the ternary mixture, especially near the surface. MD simulations showed that neutral nicotine resides in the mid-plane, while protonated nicotine remains near the surface. Nicotine binding to the membranes is dynamic, switching between bound and unbound states. Analysis via ESR/van't Hoff method revealed changes in the thermodynamics of phase coexistence, yielding distinct non-linear behavior. Nicotine altered the temperature dependence of the free energy, modifying the thermodynamic driving forces and the balance of non-covalent lipid interactions. These findings provide new insights into how nicotine influences pulmonary surfactant model membranes, with potential implications for surfactant function.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678188/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14120267","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Phase separation is essential for membrane function, and alterations in phase coexistence by membrane-interacting molecules, such as nicotine, can impair membrane stability. With the increasing use of e-cigarettes, concerns have arisen about the impact of nicotine on pulmonary surfactants. Here, we used differential scanning calorimetry (DSC), molecular dynamics (MD) simulations, and electron spin resonance (ESR) to examine nicotine's effect on the phase coexistence of two surfactant models: pure DPPC and a DPPC/POPC/POPG mixture. Our DSC analysis revealed that nicotine interacts with both membranes, increasing enthalpy and entropy change during the phase transition. ESR revealed that nicotine affects membrane fluidity and packing of DPPC more effectively than the ternary mixture, especially near the surface. MD simulations showed that neutral nicotine resides in the mid-plane, while protonated nicotine remains near the surface. Nicotine binding to the membranes is dynamic, switching between bound and unbound states. Analysis via ESR/van't Hoff method revealed changes in the thermodynamics of phase coexistence, yielding distinct non-linear behavior. Nicotine altered the temperature dependence of the free energy, modifying the thermodynamic driving forces and the balance of non-covalent lipid interactions. These findings provide new insights into how nicotine influences pulmonary surfactant model membranes, with potential implications for surfactant function.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尼古丁对肺表面活性剂模型膜热力学和相共存的影响。
相分离对膜的功能至关重要,而尼古丁等膜相互作用分子对相共存的改变会损害膜的稳定性。随着电子烟的使用越来越多,人们开始担心尼古丁对肺部表面活性剂的影响。本文采用差示扫描量热法(DSC)、分子动力学(MD)模拟和电子自旋共振(ESR)研究了尼古丁对两种表面活性剂模型(纯DPPC和DPPC/POPC/POPG混合物)相共存的影响。我们的DSC分析显示,尼古丁与两种膜相互作用,增加了相变过程中的焓和熵变化。ESR结果表明,尼古丁对DPPC膜流动性和包装的影响比三元混合物更有效,尤其是在表面附近。MD模拟表明,中性尼古丁驻留在中间平面,而质子化尼古丁则停留在表面附近。尼古丁与细胞膜的结合是动态的,在结合和非结合状态之间切换。通过ESR/van't Hoff方法分析,发现了相共存热力学的变化,产生了明显的非线性行为。尼古丁改变了自由能的温度依赖性,改变了热力学驱动力和非共价脂质相互作用的平衡。这些发现为尼古丁如何影响肺表面活性剂模型膜提供了新的见解,并对表面活性剂的功能有潜在的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
期刊最新文献
Hybrid Version of the Kedem-Katchalsky-Peusner Equations for Diffusive and Electrical Transport Processes in Membrane. Evaluation of Ceramic Membrane Filtration for Alternatives to Microplastics in Cosmetic Formulations Using FlowCam Analysis. Enhancing Virus Filter Performance Through Pretreatment by Membrane Adsorbers. Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses. Spacer Designs for Improved Hydrodynamics and Filtration Efficiency in Sea Water Reverse Osmosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1