Formalin and 2.5% Glutaraldehyde/2% Paraformaldehyde in 0.1 M Cacodylate Buffer Inactivation Protocols to Ensure the Proper Fixation of Positive Sense RNA Viruses and Genomic Material Prior to Removal from Containment.

IF 2.3 Q3 BIOCHEMICAL RESEARCH METHODS Methods and Protocols Pub Date : 2024-12-21 DOI:10.3390/mps7060105
Lauren E Panny, Ashley E Piper, Christina L Gardner, Crystal W Burke
{"title":"Formalin and 2.5% Glutaraldehyde/2% Paraformaldehyde in 0.1 M Cacodylate Buffer Inactivation Protocols to Ensure the Proper Fixation of Positive Sense RNA Viruses and Genomic Material Prior to Removal from Containment.","authors":"Lauren E Panny, Ashley E Piper, Christina L Gardner, Crystal W Burke","doi":"10.3390/mps7060105","DOIUrl":null,"url":null,"abstract":"<p><p>Recommendations released by the CDC in 2023 address the need to demonstrate that the RNA genome of positive-strand RNA viruses is inactivated in addition to viral particles. This recommendation is in response to the similarities between host mRNA and the viral genome that allow the viral RNA to be used as a template by host replication mechanisms to produce infectious viruses; therefore, there is concern that through artificial introduction into host cells, active positive-strand RNA genomes can be utilized to produce infectious viruses out of a containment facility. Utilizing 10% formalin for 7 days or 2.5% glutaraldehyde/2% paraformaldehyde in 0.1 M cacodylate buffer (glut/PFA) for 2 days to fix eastern equine encephalitis virus (EEEV)-infected non-human primate (NHP) brain tissue was found to effectively inactivate EEEV particles and genomic RNA. The methods assessed in this paper outline an effective means to validate both genomic RNA and viral particle inactivation.</p>","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":"7 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps7060105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Recommendations released by the CDC in 2023 address the need to demonstrate that the RNA genome of positive-strand RNA viruses is inactivated in addition to viral particles. This recommendation is in response to the similarities between host mRNA and the viral genome that allow the viral RNA to be used as a template by host replication mechanisms to produce infectious viruses; therefore, there is concern that through artificial introduction into host cells, active positive-strand RNA genomes can be utilized to produce infectious viruses out of a containment facility. Utilizing 10% formalin for 7 days or 2.5% glutaraldehyde/2% paraformaldehyde in 0.1 M cacodylate buffer (glut/PFA) for 2 days to fix eastern equine encephalitis virus (EEEV)-infected non-human primate (NHP) brain tissue was found to effectively inactivate EEEV particles and genomic RNA. The methods assessed in this paper outline an effective means to validate both genomic RNA and viral particle inactivation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
福尔马林和2.5%戊二醛/2%多聚甲醛在0.1 M草酸缓冲液中灭活方案,以确保在从容器中移除之前正确固定阳性RNA病毒和基因组物质。
美国疾病控制与预防中心在2023年发布的建议解决了证明除病毒颗粒外,正链RNA病毒的RNA基因组也灭活的需要。这一建议是针对宿主mRNA和病毒基因组之间的相似性作出的,这些相似性使得病毒RNA可以被宿主复制机制用作模板,以产生传染性病毒;因此,令人担忧的是,通过人工导入宿主细胞,活性正链RNA基因组可被用于从收容设施中产生感染性病毒。用10%福尔马林浸泡7天或用2.5%戊二醛/2%多聚甲醛浸泡0.1 M草酸缓冲液(glut/PFA)浸泡2天对东部马脑炎病毒(EEEV)感染的非人灵长类动物(NHP)脑组织进行修复,可有效灭活EEEV颗粒和基因组RNA。本文评估的方法概述了验证基因组RNA和病毒颗粒失活的有效手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods and Protocols
Methods and Protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
85
审稿时长
8 weeks
期刊最新文献
Optimized SDS-Based Protocol for High-Quality RNA Extraction from Musa spp. Real-Time Polymerase Chain Reaction Systems for Detection and Differentiation of Unclassified Viruses of the Phenuiviridae Family. The Least Squares Method as a Tool for Assessment of the Stroke Parameters and Velocity in Monofin Swimming. Assessment of Endocyn on Dental Pulp Stem Cells (DPSCs): A Pilot Study of Endodontic Irrigant Effects. Wild Birds' Genetic Resources Bank: Feather Follicle Cell Culture as a Possible Source of Stem Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1