Yutong Pan, Yamin Li, Zhaohong Peng, Xiaoyu Zhang, Shu Ye, Na Chen, Zhuang Zhang, Wanshui Yang
{"title":"Indole derivatives and their associated microbial genera are associated with the 1-year changes in cardiometabolic risk markers in Chinese adults.","authors":"Yutong Pan, Yamin Li, Zhaohong Peng, Xiaoyu Zhang, Shu Ye, Na Chen, Zhuang Zhang, Wanshui Yang","doi":"10.1186/s12937-024-01067-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although emerging evidence suggests that indole derivatives, microbial metabolites of tryptophan, may improve cardiometabolic health, the effective metabolites remain unclear. Also, the gut microbiota that involved in producing indole derivatives are less studied. We identified microbial taxa that can predict serum concentrations of the key indole metabolite indole-3-propionic acid (IPA) at population level and investigated the associations of indole derivatives and IPA-predicting microbial genera with cardiometabolic risk markers.</p><p><strong>Methods: </strong>In a cohort of 318 community-dwelling adults, serum indole metabolites and fecal microbiota (16S ribosomal RNA) were measured at baseline. Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and fasting blood glucose were repeatedly measured at baseline and again after 1 year. Brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI) were measured after 1 year. The association between indole derivatives and the 1-year changes in blood lipids and glucose, and association of indole derivatives with baPWV and ABI were investigated using linear regression models.</p><p><strong>Results: </strong>Each 1 µmol/L increase in indole-3-acetic acid (IAA) levels was associated with 5.08% (P = 0.046) decrease in LDL-C. IPA levels were inversely associated with baPWV (percentage difference = -1.32%, P = 0.036). Per 1 µmol/L increase in Indole-3-aldehyde (IAld) levels was associated with 1.91% (P = 0.004) decrease in TC and 0.58% (P = 0.019) increase in ABI, but 1.79% decrease in HDL-C with borderline significance (P = 0.050). We identified 18 bacterial genera whose relative abundance was positively associated with serum IPA concentrations (P<sub>FDR</sub> < 0.05) and constructed a microbial score to reflect the overall IPA-producing potential. This score was inversely associated with baPWV (percentage difference = -0.48%, P = 0.007).</p><p><strong>Conclusions: </strong>Our results suggest that IAA, IPA, IAld, and IPA-predicting microbial score are favorably associated with several cardiometabolic risk markers, although IAld may decrease HDL-C levels.</p>","PeriodicalId":19203,"journal":{"name":"Nutrition Journal","volume":"23 1","pages":"160"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681765/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12937-024-01067-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Although emerging evidence suggests that indole derivatives, microbial metabolites of tryptophan, may improve cardiometabolic health, the effective metabolites remain unclear. Also, the gut microbiota that involved in producing indole derivatives are less studied. We identified microbial taxa that can predict serum concentrations of the key indole metabolite indole-3-propionic acid (IPA) at population level and investigated the associations of indole derivatives and IPA-predicting microbial genera with cardiometabolic risk markers.
Methods: In a cohort of 318 community-dwelling adults, serum indole metabolites and fecal microbiota (16S ribosomal RNA) were measured at baseline. Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and fasting blood glucose were repeatedly measured at baseline and again after 1 year. Brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI) were measured after 1 year. The association between indole derivatives and the 1-year changes in blood lipids and glucose, and association of indole derivatives with baPWV and ABI were investigated using linear regression models.
Results: Each 1 µmol/L increase in indole-3-acetic acid (IAA) levels was associated with 5.08% (P = 0.046) decrease in LDL-C. IPA levels were inversely associated with baPWV (percentage difference = -1.32%, P = 0.036). Per 1 µmol/L increase in Indole-3-aldehyde (IAld) levels was associated with 1.91% (P = 0.004) decrease in TC and 0.58% (P = 0.019) increase in ABI, but 1.79% decrease in HDL-C with borderline significance (P = 0.050). We identified 18 bacterial genera whose relative abundance was positively associated with serum IPA concentrations (PFDR < 0.05) and constructed a microbial score to reflect the overall IPA-producing potential. This score was inversely associated with baPWV (percentage difference = -0.48%, P = 0.007).
Conclusions: Our results suggest that IAA, IPA, IAld, and IPA-predicting microbial score are favorably associated with several cardiometabolic risk markers, although IAld may decrease HDL-C levels.
期刊介绍:
Nutrition Journal publishes surveillance, epidemiologic, and intervention research that sheds light on i) influences (e.g., familial, environmental) on eating patterns; ii) associations between eating patterns and health, and iii) strategies to improve eating patterns among populations. The journal also welcomes manuscripts reporting on the psychometric properties (e.g., validity, reliability) and feasibility of methods (e.g., for assessing dietary intake) for human nutrition research. In addition, study protocols for controlled trials and cohort studies, with an emphasis on methods for assessing dietary exposures and outcomes as well as intervention components, will be considered.
Manuscripts that consider eating patterns holistically, as opposed to solely reductionist approaches that focus on specific dietary components in isolation, are encouraged. Also encouraged are papers that take a holistic or systems perspective in attempting to understand possible compensatory and differential effects of nutrition interventions. The journal does not consider animal studies.
In addition to the influence of eating patterns for human health, we also invite research providing insights into the environmental sustainability of dietary practices. Again, a holistic perspective is encouraged, for example, through the consideration of how eating patterns might maximize both human and planetary health.