{"title":"MCBERT: A multi-modal framework for the diagnosis of autism spectrum disorder.","authors":"Kainat Khan, Rahul Katarya","doi":"10.1016/j.biopsycho.2024.108976","DOIUrl":null,"url":null,"abstract":"<p><p>Within the domain of neurodevelopmental disorders, autism spectrum disorder (ASD) emerges as a distinctive neurological condition characterized by multifaceted challenges. The delayed identification of ASD poses a considerable hurdle in effectively managing its impact and mitigating its severity. Addressing these complexities requires a nuanced understanding of data modalities and the underlying patterns. Existing studies have focused on a single data modality for ASD diagnosis. Recently, there has been a significant shift towards multimodal architectures with deep learning strategies due to their ability to handle and incorporate complex data modalities. In this paper, we developed a novel multimodal ASD diagnosis architecture, referred to as Multi-Head CNN with BERT (MCBERT), which integrates bidirectional encoder representations from transformers (BERT) for meta-features and a multi-head convolutional neural network (MCNN) for the brain image modality. The MCNN incorporates two attention mechanisms to capture spatial (SAC) and channel (CAC) features. The outputs of BERT and MCNN are then fused and processed through a classification module to generate the final diagnosis. We employed the ABIDE-I dataset, a multimodal dataset, and conducted a leave-one-site-out classification to assess the model's effectiveness comprehensively. Experimental simulations demonstrate that the proposed architecture achieves a high accuracy of 93.4 %. Furthermore, the exploration of functional MRI data may provide a deeper understanding of the underlying characteristics of ASD.</p>","PeriodicalId":55372,"journal":{"name":"Biological Psychology","volume":" ","pages":"108976"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.biopsycho.2024.108976","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Within the domain of neurodevelopmental disorders, autism spectrum disorder (ASD) emerges as a distinctive neurological condition characterized by multifaceted challenges. The delayed identification of ASD poses a considerable hurdle in effectively managing its impact and mitigating its severity. Addressing these complexities requires a nuanced understanding of data modalities and the underlying patterns. Existing studies have focused on a single data modality for ASD diagnosis. Recently, there has been a significant shift towards multimodal architectures with deep learning strategies due to their ability to handle and incorporate complex data modalities. In this paper, we developed a novel multimodal ASD diagnosis architecture, referred to as Multi-Head CNN with BERT (MCBERT), which integrates bidirectional encoder representations from transformers (BERT) for meta-features and a multi-head convolutional neural network (MCNN) for the brain image modality. The MCNN incorporates two attention mechanisms to capture spatial (SAC) and channel (CAC) features. The outputs of BERT and MCNN are then fused and processed through a classification module to generate the final diagnosis. We employed the ABIDE-I dataset, a multimodal dataset, and conducted a leave-one-site-out classification to assess the model's effectiveness comprehensively. Experimental simulations demonstrate that the proposed architecture achieves a high accuracy of 93.4 %. Furthermore, the exploration of functional MRI data may provide a deeper understanding of the underlying characteristics of ASD.
期刊介绍:
Biological Psychology publishes original scientific papers on the biological aspects of psychological states and processes. Biological aspects include electrophysiology and biochemical assessments during psychological experiments as well as biologically induced changes in psychological function. Psychological investigations based on biological theories are also of interest. All aspects of psychological functioning, including psychopathology, are germane.
The Journal concentrates on work with human subjects, but may consider work with animal subjects if conceptually related to issues in human biological psychology.