Simulating non-completely positive actions via exponentiation of Hermitian-preserving maps

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2024-12-30 DOI:10.1038/s41534-024-00949-z
Fuchuan Wei, Zhenhuan Liu, Guoding Liu, Zizhao Han, Dong-Ling Deng, Zhengwei Liu
{"title":"Simulating non-completely positive actions via exponentiation of Hermitian-preserving maps","authors":"Fuchuan Wei, Zhenhuan Liu, Guoding Liu, Zizhao Han, Dong-Ling Deng, Zhengwei Liu","doi":"10.1038/s41534-024-00949-z","DOIUrl":null,"url":null,"abstract":"<p>Legitimate quantum operations must adhere to principles of quantum mechanics, particularly the requirements of complete positivity and trace preservation. Yet, non-completely positive maps, especially Hermitian-preserving maps, play a crucial role in quantum information science. Here, we introduce the Hermitian-preserving map exponentiation algorithm, which can effectively simulate the action of an arbitrary Hermitian-preserving map by exponentiating its output, <span>\\({\\mathcal{N}}(\\rho )\\)</span>, into a quantum process, <span>\\({e}^{-i{\\mathcal{N}}(\\rho )t}\\)</span>. We analyze the sample complexity of this algorithm and prove its optimality in certain cases. Utilizing positive but not completely positive maps, this algorithm provides exponential speedups in entanglement detection and quantification compared to protocols based on single-copy operations. In addition, it facilitates the encoding-free recovery of noiseless quantum states from multiple noisy ones by simulating the inverse map of the corresponding noise channel, providing a new approach to handling quantum noises. This algorithm acts as a building block of large-scale quantum algorithms and presents a pathway for exploring potential quantum speedups across a wide range of information-processing tasks.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"55 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00949-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Legitimate quantum operations must adhere to principles of quantum mechanics, particularly the requirements of complete positivity and trace preservation. Yet, non-completely positive maps, especially Hermitian-preserving maps, play a crucial role in quantum information science. Here, we introduce the Hermitian-preserving map exponentiation algorithm, which can effectively simulate the action of an arbitrary Hermitian-preserving map by exponentiating its output, \({\mathcal{N}}(\rho )\), into a quantum process, \({e}^{-i{\mathcal{N}}(\rho )t}\). We analyze the sample complexity of this algorithm and prove its optimality in certain cases. Utilizing positive but not completely positive maps, this algorithm provides exponential speedups in entanglement detection and quantification compared to protocols based on single-copy operations. In addition, it facilitates the encoding-free recovery of noiseless quantum states from multiple noisy ones by simulating the inverse map of the corresponding noise channel, providing a new approach to handling quantum noises. This algorithm acts as a building block of large-scale quantum algorithms and presents a pathway for exploring potential quantum speedups across a wide range of information-processing tasks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
Towards a spectrally multiplexed quantum repeater A mid-circuit erasure check on a dual-rail cavity qubit using the joint-photon number-splitting regime of circuit QED Observation of multiple steady states with engineered dissipation Efficient fault-tolerant implementations of non-Clifford gates with reconfigurable atom arrays Simulating non-completely positive actions via exponentiation of Hermitian-preserving maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1