Li Li, Tong Liu, Xue-Yi Guo, He Zhang, Silu Zhao, Zheng-An Wang, Zhongcheng Xiang, Xiaohui Song, Yu-Xiang Zhang, Kai Xu, Heng Fan, Dongning Zheng
{"title":"Observation of multiple steady states with engineered dissipation","authors":"Li Li, Tong Liu, Xue-Yi Guo, He Zhang, Silu Zhao, Zheng-An Wang, Zhongcheng Xiang, Xiaohui Song, Yu-Xiang Zhang, Kai Xu, Heng Fan, Dongning Zheng","doi":"10.1038/s41534-025-00958-6","DOIUrl":null,"url":null,"abstract":"<p>Simulating the dynamics of open quantum systems is essential in achieving practical quantum computation and understanding novel nonequilibrium behaviors. However, quantum simulation of a many-body system coupled to an engineered reservoir has yet to be fully explored in present-day experiment platforms. In this work, we introduce engineered noise into a one-dimensional ten-qubit superconducting quantum processor to emulate a generic many-body open quantum system. Our approach originates from the stochastic unravellings of the master equation. By measuring the end-to-end correlation, we identify multiple steady states stemmed from a strong symmetry, which is established on the modified Hamiltonian via Floquet engineering. Furthermore, we investigate the structure of the steady-state manifold by preparing initial states as a superposition of states within different sectors on a five-qubit chain. Our work provides a manageable and hardware-efficient strategy for the open-system quantum simulation.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"48 2 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-00958-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Simulating the dynamics of open quantum systems is essential in achieving practical quantum computation and understanding novel nonequilibrium behaviors. However, quantum simulation of a many-body system coupled to an engineered reservoir has yet to be fully explored in present-day experiment platforms. In this work, we introduce engineered noise into a one-dimensional ten-qubit superconducting quantum processor to emulate a generic many-body open quantum system. Our approach originates from the stochastic unravellings of the master equation. By measuring the end-to-end correlation, we identify multiple steady states stemmed from a strong symmetry, which is established on the modified Hamiltonian via Floquet engineering. Furthermore, we investigate the structure of the steady-state manifold by preparing initial states as a superposition of states within different sectors on a five-qubit chain. Our work provides a manageable and hardware-efficient strategy for the open-system quantum simulation.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.