Multitrophic interactions support belowground carbon sequestration through microbial necromass accumulation in dryland biocrusts

IF 9.8 1区 农林科学 Q1 SOIL SCIENCE Soil Biology & Biochemistry Pub Date : 2024-12-30 DOI:10.1016/j.soilbio.2024.109708
Jia Shi, Lijia Lu, Jingxi Zang, Yuanze Sun, Jianguo Tao, Zelong Zhao, Xiang Wang, Jie Wang
{"title":"Multitrophic interactions support belowground carbon sequestration through microbial necromass accumulation in dryland biocrusts","authors":"Jia Shi, Lijia Lu, Jingxi Zang, Yuanze Sun, Jianguo Tao, Zelong Zhao, Xiang Wang, Jie Wang","doi":"10.1016/j.soilbio.2024.109708","DOIUrl":null,"url":null,"abstract":"Belowground organisms play essential roles in biogeochemical cycling of carbon. However, it remains unknown how species interactions across multiple trophic levels influence soil carbon sequestration. Biological soil crusts (biocrusts) comprise multiple trophic groups, forming an ideal model system to study species interactions in natural communities. This study explored the critical role of multitrophic interactions in shaping the accumulation of microbial necromass carbon (MNC), comparing biocrust-covered and bare soils in the dryland ecosystem of the Loess Plateau. Amino sugars were used as indicators of soil microbial necromass, and environmental DNA sequencing was used to characterize multitrophic communities in soil samples. Biocrust-associated soils exhibited 2.5 times higher MNC than bare soils, with bacterial necromass carbon (BNC) constituting a larger proportion of soil organic carbon than fungal necromass carbon (FNC). Greater network complexity and more frequent within-trophic associations (WTAs) were observed for bare soils. The proportion of negative WTAs was negatively correlated with MNC, whereas the proportion of cross-trophic associations (CTAs) was positively correlated with MNC. Community composition, hierarchical interactions, and network complexity all shaped microbial necromass carbon accumulation. This study illustrates a novel mechanism contributing to carbon sequestration in dryland ecosystems, wherein multitrophic interactions within the soil micro-food web regulate microbial necromass accumulation, and sheds light on the dynamics and stabilization of soil microbial necromass.","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"10 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.soilbio.2024.109708","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Belowground organisms play essential roles in biogeochemical cycling of carbon. However, it remains unknown how species interactions across multiple trophic levels influence soil carbon sequestration. Biological soil crusts (biocrusts) comprise multiple trophic groups, forming an ideal model system to study species interactions in natural communities. This study explored the critical role of multitrophic interactions in shaping the accumulation of microbial necromass carbon (MNC), comparing biocrust-covered and bare soils in the dryland ecosystem of the Loess Plateau. Amino sugars were used as indicators of soil microbial necromass, and environmental DNA sequencing was used to characterize multitrophic communities in soil samples. Biocrust-associated soils exhibited 2.5 times higher MNC than bare soils, with bacterial necromass carbon (BNC) constituting a larger proportion of soil organic carbon than fungal necromass carbon (FNC). Greater network complexity and more frequent within-trophic associations (WTAs) were observed for bare soils. The proportion of negative WTAs was negatively correlated with MNC, whereas the proportion of cross-trophic associations (CTAs) was positively correlated with MNC. Community composition, hierarchical interactions, and network complexity all shaped microbial necromass carbon accumulation. This study illustrates a novel mechanism contributing to carbon sequestration in dryland ecosystems, wherein multitrophic interactions within the soil micro-food web regulate microbial necromass accumulation, and sheds light on the dynamics and stabilization of soil microbial necromass.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Biology & Biochemistry
Soil Biology & Biochemistry 农林科学-土壤科学
CiteScore
16.90
自引率
9.30%
发文量
312
审稿时长
49 days
期刊介绍: Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.
期刊最新文献
Thermodynamics of Microbial Decomposition of Persistent Carbon in Erosion-Buried Topsoils Context-dependent contributions of arbuscular mycorrhizal fungi to host performance under global change factors Soil pH promoted respiration is stimulated by exoenzyme kinetic properties for a Pinus tabuliformis forest of northern China Heterotrophic nitrification in soils: approaches and mechanisms Multitrophic interactions support belowground carbon sequestration through microbial necromass accumulation in dryland biocrusts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1