{"title":"Halogen-Atom Engineering on Aromatic-Core in Tethered Small Molecule Acceptors for High-Performance Polymer Solar Cells","authors":"Shanshan Jian, Yu Zang, Shixin Meng, Ming Zhang, Zhengkai Li, Qi Chen, Hongru Chen, Qingyuan Wang, Shanshan Chen, Lingwei Xue, Xiuyu Wang, Zhi-Guo Zhang","doi":"10.1002/smll.202411409","DOIUrl":null,"url":null,"abstract":"Tethered small molecular acceptors (SMAs), where multiple SMA-subunits are connected to the aromatic core via flexible chains, are proposed to suppress thermodynamic relaxation when blended with polymer donors to construct stable polymer solar cells (PSCs). However, optimizing their chemical structure to further enhance device performance remains a challenge, requiring careful fine-tuning between molecular aggregation and photovoltaic efficiency. In this study, the photovoltaic properties of tethered dimers are effectively modulated simply through halogen-atom engineering on the aromatic core. Specifically, DY-Cl with a chlorine atom and DY-Br with a bromine atom are designed. The study revealed the chloride acceptor enhances the intermolecular interaction, promotes charge transport, and optimizes the morphology of the active layer compared with its bromide counterpart. Notably, DY-Cl based PSCs achieves a power conversion efficiency of 18.72%, maintaining over 80% of initial PCE after operating for 1000 h. These findings underscore the potential advantages of halogen-atom engineering on tethered acceptors as a straightforward yet effective method to achieve high efficiency and stable PSCs.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"8 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/smll.202411409","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Tethered small molecular acceptors (SMAs), where multiple SMA-subunits are connected to the aromatic core via flexible chains, are proposed to suppress thermodynamic relaxation when blended with polymer donors to construct stable polymer solar cells (PSCs). However, optimizing their chemical structure to further enhance device performance remains a challenge, requiring careful fine-tuning between molecular aggregation and photovoltaic efficiency. In this study, the photovoltaic properties of tethered dimers are effectively modulated simply through halogen-atom engineering on the aromatic core. Specifically, DY-Cl with a chlorine atom and DY-Br with a bromine atom are designed. The study revealed the chloride acceptor enhances the intermolecular interaction, promotes charge transport, and optimizes the morphology of the active layer compared with its bromide counterpart. Notably, DY-Cl based PSCs achieves a power conversion efficiency of 18.72%, maintaining over 80% of initial PCE after operating for 1000 h. These findings underscore the potential advantages of halogen-atom engineering on tethered acceptors as a straightforward yet effective method to achieve high efficiency and stable PSCs.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.