Simulated brain networks reflecting progression of Parkinson's disease.

IF 3.6 3区 医学 Q2 NEUROSCIENCES Network Neuroscience Pub Date : 2024-12-10 eCollection Date: 2024-01-01 DOI:10.1162/netn_a_00406
Kyesam Jung, Simon B Eickhoff, Julian Caspers, Oleksandr V Popovych
{"title":"Simulated brain networks reflecting progression of Parkinson's disease.","authors":"Kyesam Jung, Simon B Eickhoff, Julian Caspers, Oleksandr V Popovych","doi":"10.1162/netn_a_00406","DOIUrl":null,"url":null,"abstract":"<p><p>The neurodegenerative progression of Parkinson's disease affects brain structure and function and, concomitantly, alters the topological properties of brain networks. The network alteration accompanied by motor impairment and the duration of the disease has not yet been clearly demonstrated in the disease progression. In this study, we aim to resolve this problem with a modeling approach using the reduced Jansen-Rit model applied to large-scale brain networks derived from cross-sectional MRI data. Optimizing whole-brain simulation models allows us to discover brain networks showing unexplored relationships with clinical variables. We observe that the simulated brain networks exhibit significant differences between healthy controls (<i>n</i> = 51) and patients with Parkinson's disease (<i>n</i> = 60) and strongly correlate with disease severity and disease duration of the patients. Moreover, the modeling results outperform the empirical brain networks in these clinical measures. Consequently, this study demonstrates that utilizing the simulated brain networks provides an enhanced view of network alterations in the progression of motor impairment and identifies potential biomarkers for clinical indices.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"8 4","pages":"1400-1420"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00406","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The neurodegenerative progression of Parkinson's disease affects brain structure and function and, concomitantly, alters the topological properties of brain networks. The network alteration accompanied by motor impairment and the duration of the disease has not yet been clearly demonstrated in the disease progression. In this study, we aim to resolve this problem with a modeling approach using the reduced Jansen-Rit model applied to large-scale brain networks derived from cross-sectional MRI data. Optimizing whole-brain simulation models allows us to discover brain networks showing unexplored relationships with clinical variables. We observe that the simulated brain networks exhibit significant differences between healthy controls (n = 51) and patients with Parkinson's disease (n = 60) and strongly correlate with disease severity and disease duration of the patients. Moreover, the modeling results outperform the empirical brain networks in these clinical measures. Consequently, this study demonstrates that utilizing the simulated brain networks provides an enhanced view of network alterations in the progression of motor impairment and identifies potential biomarkers for clinical indices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反映帕金森病进展的模拟大脑网络。
帕金森氏症的神经退行性进展影响大脑结构和功能,并随之改变大脑网络的拓扑特性。伴随运动障碍的神经网络改变和疾病的持续时间在疾病进展中尚未得到明确证明。在这项研究中,我们的目标是通过一种建模方法来解决这个问题,这种建模方法使用了简化的Jansen-Rit模型,该模型应用于来自横断面MRI数据的大规模脑网络。优化全脑模拟模型使我们能够发现大脑网络与临床变量之间未被探索的关系。我们观察到,模拟脑网络在健康对照(n = 51)和帕金森病患者(n = 60)之间表现出显著差异,并且与患者的疾病严重程度和病程密切相关。此外,在这些临床测量中,建模结果优于经验脑网络。因此,本研究表明,利用模拟大脑网络可以增强对运动损伤进展中的网络改变的看法,并确定临床指标的潜在生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
期刊最新文献
Brain signaling becomes less integrated and more segregated with age. CoCoNest: A continuous structural connectivity-based nested family of parcellations of the human cerebral cortex. Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states. Contrasting topologies of synchronous and asynchronous functional brain networks. Exploring memory-related network via dorsal hippocampus suppression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1