{"title":"Diurnal temperature variation exacerbates the effects of phenanthrene on Trochus pyramis Born in a warmer ocean","authors":"Jingying Ren, Yongliang Liu, Xin Liu, Jianmin Zhao, Tianyu Zhang","doi":"10.1016/j.jhazmat.2024.137068","DOIUrl":null,"url":null,"abstract":"Under global change scenarios, rising seawater temperature could affect the toxicity of chemical pollutants on marine organisms. Tropical species inhabiting coastal areas are especially vulnerable to diurnal temperature variation (DTV), yet the impacts of DTV on pollutant toxicity remains obscured. This study evaluated how a 4℃ DTV affects the toxicity of phenanthrene (PHE) on the physiological traits of <em>Trochus pyramis</em>, a key herbivorous gastropod in coral reef ecosystems, under both control (28°C) and elevated temperature (31°C) conditions. <em>T. pyramis</em> were exposed to PHE (1 and 10<!-- --> <!-- -->μg/L) across different temperature scenarios for 14 days. Subsequently, PHE bioaccumulation, heat tolerance, antioxidant responses, and energy budgets of <em>T. pyramis</em> were assessed. The results showed that PHE had minimal effect on <em>T. pyramis</em> under DTV at 28°C, likely due to enhanced antioxidant responses and adaptive energy supply strategies induced by DTV. Conversely, DTV exacerbated the deleterious effect of PHE at 31℃, particularly under exposure to high-concentration PHE (10<!-- --> <!-- -->μg/L), leading to reduced heat tolerance, suppressed antioxidant responses, and disturbed energy metabolism. These results underscore the necessity of incorporating DTV into PHE risk assessments for coral reef ecosystems in the context of global warming.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"4 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.137068","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Under global change scenarios, rising seawater temperature could affect the toxicity of chemical pollutants on marine organisms. Tropical species inhabiting coastal areas are especially vulnerable to diurnal temperature variation (DTV), yet the impacts of DTV on pollutant toxicity remains obscured. This study evaluated how a 4℃ DTV affects the toxicity of phenanthrene (PHE) on the physiological traits of Trochus pyramis, a key herbivorous gastropod in coral reef ecosystems, under both control (28°C) and elevated temperature (31°C) conditions. T. pyramis were exposed to PHE (1 and 10 μg/L) across different temperature scenarios for 14 days. Subsequently, PHE bioaccumulation, heat tolerance, antioxidant responses, and energy budgets of T. pyramis were assessed. The results showed that PHE had minimal effect on T. pyramis under DTV at 28°C, likely due to enhanced antioxidant responses and adaptive energy supply strategies induced by DTV. Conversely, DTV exacerbated the deleterious effect of PHE at 31℃, particularly under exposure to high-concentration PHE (10 μg/L), leading to reduced heat tolerance, suppressed antioxidant responses, and disturbed energy metabolism. These results underscore the necessity of incorporating DTV into PHE risk assessments for coral reef ecosystems in the context of global warming.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.