Implicit link prediction based on extended social graph

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2024-12-31 DOI:10.1007/s40747-024-01736-1
Ling Xing, Jinxin Liu, Qi Zhang, Honghai Wu, Huahong Ma, Xiaohui Zhang
{"title":"Implicit link prediction based on extended social graph","authors":"Ling Xing, Jinxin Liu, Qi Zhang, Honghai Wu, Huahong Ma, Xiaohui Zhang","doi":"10.1007/s40747-024-01736-1","DOIUrl":null,"url":null,"abstract":"<p>Link prediction infers the likelihood of a connection between two nodes based on network structural information, aiming to foresee potential latent relationships within the network. In social networks, nodes typically represent users, and links denote the relationships between users. However, some user nodes in social networks are hidden due to unknown or incomplete link information. The prediction of implicit links between these nodes and other user nodes is hampered by incomplete network structures and partial node information, affecting the accuracy of link prediction. To address these issues, this paper introduces an implicit link prediction algorithm based on extended social graph (ILP-ESG). The algorithm completes user attribute information through a multi-task fusion attribute inference framework built on associative learning. Subsequently, an extended social graph is constructed based on user attribute relations, social relations, and discourse interaction relations, enriching user nodes with comprehensive representational information. A semi-supervised graph autoencoder is then employed to extract features from the three types of relationships in the extended social graph, obtaining feature vectors that effectively represent the multidimensional relationship information of users. This facilitates the inference of potential implicit links between nodes and the prediction of hidden user relationships with others. This algorithm is validated on real datasets, and the results show that under the Facebook dataset, the algorithm improves the AUC and Precision metrics by an average of 5.17<span>\\(\\%\\)</span> and 9.25<span>\\(\\%\\)</span> compared to the baseline method, and under the Instagram dataset, it improves by 7.71<span>\\(\\%\\)</span> and 16.16<span>\\(\\%\\)</span>, respectively. Good stability and robustness are exhibited, ensuring the accuracy of link prediction.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"178 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01736-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Link prediction infers the likelihood of a connection between two nodes based on network structural information, aiming to foresee potential latent relationships within the network. In social networks, nodes typically represent users, and links denote the relationships between users. However, some user nodes in social networks are hidden due to unknown or incomplete link information. The prediction of implicit links between these nodes and other user nodes is hampered by incomplete network structures and partial node information, affecting the accuracy of link prediction. To address these issues, this paper introduces an implicit link prediction algorithm based on extended social graph (ILP-ESG). The algorithm completes user attribute information through a multi-task fusion attribute inference framework built on associative learning. Subsequently, an extended social graph is constructed based on user attribute relations, social relations, and discourse interaction relations, enriching user nodes with comprehensive representational information. A semi-supervised graph autoencoder is then employed to extract features from the three types of relationships in the extended social graph, obtaining feature vectors that effectively represent the multidimensional relationship information of users. This facilitates the inference of potential implicit links between nodes and the prediction of hidden user relationships with others. This algorithm is validated on real datasets, and the results show that under the Facebook dataset, the algorithm improves the AUC and Precision metrics by an average of 5.17\(\%\) and 9.25\(\%\) compared to the baseline method, and under the Instagram dataset, it improves by 7.71\(\%\) and 16.16\(\%\), respectively. Good stability and robustness are exhibited, ensuring the accuracy of link prediction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
A novel graph convolution and frequency domain filtering approach for hyperspectral anomaly detection An interaction relational inference method for a coal-mining equipment system Unleashing the power of pinyin: promoting Chinese named entity recognition with multiple embedding and attention Causal discovery and fault diagnosis based on mixed data types for system reliability modeling IMTLM-Net: improved multi-task transformer based on localization mechanism network for handwritten English text recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1