Exploring 2d localization with a step-dependent coin

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY The European Physical Journal Plus Pub Date : 2024-12-31 DOI:10.1140/epjp/s13360-024-05923-4
Kallol Sen
{"title":"Exploring 2d localization with a step-dependent coin","authors":"Kallol Sen","doi":"10.1140/epjp/s13360-024-05923-4","DOIUrl":null,"url":null,"abstract":"<div><p>We generalize the coin operator of Zahed and Sen (2023), to include a step-dependent feature which induces localization in 2<i>d</i>. This is evident from the probability distributions which can be further used to categorize the localized walks. Localization is also evident from the entropic measures. We compute and compare three distinct measures (a) Shannon entropy in the position and coin space, (b) entanglement entropy between position and spin space and (c) Quantum Relative Entropy which is a POVM of density operators of the step-dependent and step-independent coins. Shannon entropy and entanglement entropy are periodic and bounded functions of the time steps. The zeros of Shannon and entanglement entropies signify a complete localization of the wave function. The Quantum Relative Entropy and Quantum Information Variance exhibit a similar periodic feature with a zero minima where the step-dependent and step-independent walks coincide. Finally, we compute the numerical localization length (inverse of the Lyapunov exponent) for the step-dependent coin as a function of energy and compare with an approximate perturbative computation, where we put the step-dependent coin as a perturbation in the background of a step-independent coin. In both the instances, we find that the localization length peaks at approximately the same positions in the momentum space.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05923-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize the coin operator of Zahed and Sen (2023), to include a step-dependent feature which induces localization in 2d. This is evident from the probability distributions which can be further used to categorize the localized walks. Localization is also evident from the entropic measures. We compute and compare three distinct measures (a) Shannon entropy in the position and coin space, (b) entanglement entropy between position and spin space and (c) Quantum Relative Entropy which is a POVM of density operators of the step-dependent and step-independent coins. Shannon entropy and entanglement entropy are periodic and bounded functions of the time steps. The zeros of Shannon and entanglement entropies signify a complete localization of the wave function. The Quantum Relative Entropy and Quantum Information Variance exhibit a similar periodic feature with a zero minima where the step-dependent and step-independent walks coincide. Finally, we compute the numerical localization length (inverse of the Lyapunov exponent) for the step-dependent coin as a function of energy and compare with an approximate perturbative computation, where we put the step-dependent coin as a perturbation in the background of a step-independent coin. In both the instances, we find that the localization length peaks at approximately the same positions in the momentum space.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
期刊最新文献
Effect of coupling strength and phase lag asymmetries in two-populations with higher-order interaction PSO inspired global neighbourhood based Qubit mapping: a new approach Determination of resistivity of permanent magnets by AC susceptibility measurements Particle motion and lensing with plasma of black hole in coincident \(f\left( \mathbb{Q}, \mathbb{B}_Q\right) \) gravity coupled to nonlinear electrodynamics Exploring 2d localization with a step-dependent coin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1