{"title":"Exploring 2d localization with a step-dependent coin","authors":"Kallol Sen","doi":"10.1140/epjp/s13360-024-05923-4","DOIUrl":null,"url":null,"abstract":"<div><p>We generalize the coin operator of Zahed and Sen (2023), to include a step-dependent feature which induces localization in 2<i>d</i>. This is evident from the probability distributions which can be further used to categorize the localized walks. Localization is also evident from the entropic measures. We compute and compare three distinct measures (a) Shannon entropy in the position and coin space, (b) entanglement entropy between position and spin space and (c) Quantum Relative Entropy which is a POVM of density operators of the step-dependent and step-independent coins. Shannon entropy and entanglement entropy are periodic and bounded functions of the time steps. The zeros of Shannon and entanglement entropies signify a complete localization of the wave function. The Quantum Relative Entropy and Quantum Information Variance exhibit a similar periodic feature with a zero minima where the step-dependent and step-independent walks coincide. Finally, we compute the numerical localization length (inverse of the Lyapunov exponent) for the step-dependent coin as a function of energy and compare with an approximate perturbative computation, where we put the step-dependent coin as a perturbation in the background of a step-independent coin. In both the instances, we find that the localization length peaks at approximately the same positions in the momentum space.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05923-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We generalize the coin operator of Zahed and Sen (2023), to include a step-dependent feature which induces localization in 2d. This is evident from the probability distributions which can be further used to categorize the localized walks. Localization is also evident from the entropic measures. We compute and compare three distinct measures (a) Shannon entropy in the position and coin space, (b) entanglement entropy between position and spin space and (c) Quantum Relative Entropy which is a POVM of density operators of the step-dependent and step-independent coins. Shannon entropy and entanglement entropy are periodic and bounded functions of the time steps. The zeros of Shannon and entanglement entropies signify a complete localization of the wave function. The Quantum Relative Entropy and Quantum Information Variance exhibit a similar periodic feature with a zero minima where the step-dependent and step-independent walks coincide. Finally, we compute the numerical localization length (inverse of the Lyapunov exponent) for the step-dependent coin as a function of energy and compare with an approximate perturbative computation, where we put the step-dependent coin as a perturbation in the background of a step-independent coin. In both the instances, we find that the localization length peaks at approximately the same positions in the momentum space.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.