A sample size analysis of a mathematical model of longitudinal tumor volume and progression-free survival for Bayesian individual dynamic predictions in recurrent high-grade glioma.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY CPT: Pharmacometrics & Systems Pharmacology Pub Date : 2024-12-30 DOI:10.1002/psp4.13290
Daniel J Glazar, Solmaz Sahebjam, Hsiang-Husan M Yu, Dung-Tsa Chen, Menal Bhandari, Heiko Enderling
{"title":"A sample size analysis of a mathematical model of longitudinal tumor volume and progression-free survival for Bayesian individual dynamic predictions in recurrent high-grade glioma.","authors":"Daniel J Glazar, Solmaz Sahebjam, Hsiang-Husan M Yu, Dung-Tsa Chen, Menal Bhandari, Heiko Enderling","doi":"10.1002/psp4.13290","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with recurrent high-grade glioma (rHGG) have a poor prognosis with median progression-free survival (PFS) of <7 months. Responses to treatment are heterogenous, suggesting a clinical need for prognostic models. Bayesian data analysis can exploit individual patient follow-up imaging studies to adaptively predict the risk of progression. We propose a novel sample size analysis for Bayesian individual dynamic predictions and demonstrate proof of principle. We coupled a nonlinear mixed effects tumor growth inhibition model with a survival model. Longitudinal tumor volumes and time-to-progression were simulated for 2000 in silico rHGG patients. Bayesian individual dynamic predictions of PFS curves were evaluated using area under the receiver operating characteristic curve (AUC) and Brier skill score (BSS). We investigated the effects of sample size on AUC and BSS margins of error. A power law relationship was observed between sample size and margins of error of AUC and BSS. Sample size was also found to be negatively correlated with margins of error and landmark time. We explored the use of this sample size analysis as a clinical look-up table for prospective clinical trial design and retrospective clinical data analysis. Here, we motivate the application of Bayesian individual dynamic predictions as a clinical end point for clinical trial design. Doing so could aid in the development of study protocols with patient-specific adaptations (escalate or de-escalate dose or frequency of drug administration, increase or decrease the frequency of follow-up, or change therapeutic modality) according to patient-specific prognosis. Future developments of this approach will focus on further model development and validation.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.13290","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Patients with recurrent high-grade glioma (rHGG) have a poor prognosis with median progression-free survival (PFS) of <7 months. Responses to treatment are heterogenous, suggesting a clinical need for prognostic models. Bayesian data analysis can exploit individual patient follow-up imaging studies to adaptively predict the risk of progression. We propose a novel sample size analysis for Bayesian individual dynamic predictions and demonstrate proof of principle. We coupled a nonlinear mixed effects tumor growth inhibition model with a survival model. Longitudinal tumor volumes and time-to-progression were simulated for 2000 in silico rHGG patients. Bayesian individual dynamic predictions of PFS curves were evaluated using area under the receiver operating characteristic curve (AUC) and Brier skill score (BSS). We investigated the effects of sample size on AUC and BSS margins of error. A power law relationship was observed between sample size and margins of error of AUC and BSS. Sample size was also found to be negatively correlated with margins of error and landmark time. We explored the use of this sample size analysis as a clinical look-up table for prospective clinical trial design and retrospective clinical data analysis. Here, we motivate the application of Bayesian individual dynamic predictions as a clinical end point for clinical trial design. Doing so could aid in the development of study protocols with patient-specific adaptations (escalate or de-escalate dose or frequency of drug administration, increase or decrease the frequency of follow-up, or change therapeutic modality) according to patient-specific prognosis. Future developments of this approach will focus on further model development and validation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纵向肿瘤体积和无进展生存的数学模型的样本大小分析,用于贝叶斯个体动态预测复发的高级别胶质瘤。
复发性高级别胶质瘤(rHGG)患者的预后较差,中位无进展生存期(PFS)为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
期刊最新文献
Issue Information PBPK-Led Assessment of Antimalarial Drug Concentrations in Breastmilk: A Strategy for Optimal Use of Prediction Methods to Guide Decision Making in an Understudied Population. Elucidating Contributions of Drug Transporters/Enzyme to Nonlinear Pharmacokinetics of Grazoprevir by PBPK Modeling With a Cluster Gauss-Newton Method. Comparing Scientific Machine Learning With Population Pharmacokinetic and Classical Machine Learning Approaches for Prediction of Drug Concentrations. Population Pharmacokinetics and Exposure-Response of Subcutaneous Atezolizumab in Patients With Non-Small Cell Lung Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1