FacialNet: facial emotion recognition for mental health analysis using UNet segmentation with transfer learning model.

IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Frontiers in Computational Neuroscience Pub Date : 2024-12-11 eCollection Date: 2024-01-01 DOI:10.3389/fncom.2024.1485121
In-Seop Na, Asma Aldrees, Abeer Hakeem, Linda Mohaisen, Muhammad Umer, Dina Abdulaziz AlHammadi, Shtwai Alsubai, Nisreen Innab, Imran Ashraf
{"title":"FacialNet: facial emotion recognition for mental health analysis using UNet segmentation with transfer learning model.","authors":"In-Seop Na, Asma Aldrees, Abeer Hakeem, Linda Mohaisen, Muhammad Umer, Dina Abdulaziz AlHammadi, Shtwai Alsubai, Nisreen Innab, Imran Ashraf","doi":"10.3389/fncom.2024.1485121","DOIUrl":null,"url":null,"abstract":"<p><p>Facial emotion recognition (FER) can serve as a valuable tool for assessing emotional states, which are often linked to mental health. However, mental health encompasses a broad range of factors that go beyond facial expressions. While FER provides insights into certain aspects of emotional well-being, it can be used in conjunction with other assessments to form a more comprehensive understanding of an individual's mental health. This research work proposes a framework for human FER using UNet image segmentation and transfer learning with the EfficientNetB4 model (called FacialNet). The proposed model demonstrates promising results, achieving an accuracy of 90% for six emotion classes (happy, sad, fear, pain, anger, and disgust) and 96.39% for binary classification (happy and sad). The significance of FacialNet is judged by extensive experiments conducted against various machine learning and deep learning models, as well as state-of-the-art previous research works in FER. The significance of FacialNet is further validated using a cross-validation technique, ensuring reliable performance across different data splits. The findings highlight the effectiveness of leveraging UNet image segmentation and EfficientNetB4 transfer learning for accurate and efficient human facial emotion recognition, offering promising avenues for real-world applications in emotion-aware systems and effective computing platforms. Experimental findings reveal that the proposed approach performs substantially better than existing works with an improved accuracy of 96.39% compared to existing 94.26%.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1485121"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683786/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1485121","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Facial emotion recognition (FER) can serve as a valuable tool for assessing emotional states, which are often linked to mental health. However, mental health encompasses a broad range of factors that go beyond facial expressions. While FER provides insights into certain aspects of emotional well-being, it can be used in conjunction with other assessments to form a more comprehensive understanding of an individual's mental health. This research work proposes a framework for human FER using UNet image segmentation and transfer learning with the EfficientNetB4 model (called FacialNet). The proposed model demonstrates promising results, achieving an accuracy of 90% for six emotion classes (happy, sad, fear, pain, anger, and disgust) and 96.39% for binary classification (happy and sad). The significance of FacialNet is judged by extensive experiments conducted against various machine learning and deep learning models, as well as state-of-the-art previous research works in FER. The significance of FacialNet is further validated using a cross-validation technique, ensuring reliable performance across different data splits. The findings highlight the effectiveness of leveraging UNet image segmentation and EfficientNetB4 transfer learning for accurate and efficient human facial emotion recognition, offering promising avenues for real-world applications in emotion-aware systems and effective computing platforms. Experimental findings reveal that the proposed approach performs substantially better than existing works with an improved accuracy of 96.39% compared to existing 94.26%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Computational Neuroscience
Frontiers in Computational Neuroscience MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
5.30
自引率
3.10%
发文量
166
审稿时长
6-12 weeks
期刊介绍: Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions. Also: comp neuro
期刊最新文献
Editorial: Advances in computer science and their impact on data acquisition and analysis in neuroscience. Learning delays through gradients and structure: emergence of spatiotemporal patterns in spiking neural networks. Editorial: Deep learning and neuroimage processing in understanding neurological diseases. Alleviating the medical strain: a triage method via cross-domain text classification. Multimodal sleep staging network based on obstructive sleep apnea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1