Research on adverse event classification algorithm of da Vinci surgical robot based on Bert-BiLSTM model.

IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Frontiers in Computational Neuroscience Pub Date : 2024-12-16 eCollection Date: 2024-01-01 DOI:10.3389/fncom.2024.1476164
Tianchun Li, Wanting Zhu, Wenke Xia, Li Wang, Weiqi Li, Peiming Zhang
{"title":"Research on adverse event classification algorithm of da Vinci surgical robot based on Bert-BiLSTM model.","authors":"Tianchun Li, Wanting Zhu, Wenke Xia, Li Wang, Weiqi Li, Peiming Zhang","doi":"10.3389/fncom.2024.1476164","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to enhance the classification accuracy of adverse events associated with the da Vinci surgical robot through advanced natural language processing techniques, thereby ensuring medical device safety and protecting patient health. Addressing the issues of incomplete and inconsistent adverse event records, we employed a deep learning model that combines BERT and BiLSTM to predict whether adverse event reports resulted in patient harm. We developed the Bert-BiLSTM-Att_dropout model specifically for text classification tasks with small datasets, optimizing the model's generalization ability and key information capture through the integration of dropout and attention mechanisms. Our model demonstrated exceptional performance on a dataset comprising 4,568 da Vinci surgical robot adverse event reports collected from 2013 to 2023, achieving an average F1 score of 90.15%, significantly surpassing baseline models such as GRU, LSTM, BiLSTM-Attention, and BERT. This achievement not only validates the model's effectiveness in text classification within this specific domain but also substantially improves the usability and accuracy of adverse event reporting, contributing to the prevention of medical incidents and reduction of patient harm. Furthermore, our research experimentally confirmed the model's performance, alleviating the data classification and analysis burden for healthcare professionals. Through comparative analysis, we highlighted the potential of combining BERT and BiLSTM in text classification tasks, particularly for small datasets in the medical field. Our findings advance the development of adverse event monitoring technologies for medical devices and provide critical insights for future research and enhancements.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1476164"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682881/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1476164","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to enhance the classification accuracy of adverse events associated with the da Vinci surgical robot through advanced natural language processing techniques, thereby ensuring medical device safety and protecting patient health. Addressing the issues of incomplete and inconsistent adverse event records, we employed a deep learning model that combines BERT and BiLSTM to predict whether adverse event reports resulted in patient harm. We developed the Bert-BiLSTM-Att_dropout model specifically for text classification tasks with small datasets, optimizing the model's generalization ability and key information capture through the integration of dropout and attention mechanisms. Our model demonstrated exceptional performance on a dataset comprising 4,568 da Vinci surgical robot adverse event reports collected from 2013 to 2023, achieving an average F1 score of 90.15%, significantly surpassing baseline models such as GRU, LSTM, BiLSTM-Attention, and BERT. This achievement not only validates the model's effectiveness in text classification within this specific domain but also substantially improves the usability and accuracy of adverse event reporting, contributing to the prevention of medical incidents and reduction of patient harm. Furthermore, our research experimentally confirmed the model's performance, alleviating the data classification and analysis burden for healthcare professionals. Through comparative analysis, we highlighted the potential of combining BERT and BiLSTM in text classification tasks, particularly for small datasets in the medical field. Our findings advance the development of adverse event monitoring technologies for medical devices and provide critical insights for future research and enhancements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Computational Neuroscience
Frontiers in Computational Neuroscience MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
5.30
自引率
3.10%
发文量
166
审稿时长
6-12 weeks
期刊介绍: Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions. Also: comp neuro
期刊最新文献
Editorial: Advances in computer science and their impact on data acquisition and analysis in neuroscience. Learning delays through gradients and structure: emergence of spatiotemporal patterns in spiking neural networks. Editorial: Deep learning and neuroimage processing in understanding neurological diseases. Alleviating the medical strain: a triage method via cross-domain text classification. Multimodal sleep staging network based on obstructive sleep apnea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1