Optomechanical energy enhanced BF-QEPAS for fast and sensitive gas sensing

IF 7.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Photoacoustics Pub Date : 2025-02-01 DOI:10.1016/j.pacs.2024.100677
Weilin Ye , Linfeng He , Weihao Liu , Zhile Yuan , Kaiyuan Zheng , Guolin Li
{"title":"Optomechanical energy enhanced BF-QEPAS for fast and sensitive gas sensing","authors":"Weilin Ye ,&nbsp;Linfeng He ,&nbsp;Weihao Liu ,&nbsp;Zhile Yuan ,&nbsp;Kaiyuan Zheng ,&nbsp;Guolin Li","doi":"10.1016/j.pacs.2024.100677","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional beat frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) are limited by short energy accumulation times and the necessity of a decay period, leading to weaker signals and longer measurement cycles. Herein, we present a novel optomechanical energy-enhanced (OEE-) BF-QEPAS technique for fast and sensitive gas sensing. Our approach employs periodic pulse-width modulation (PWM) of the laser signal with an optimized duty cycle, maintaining the quartz tuning fork's (QTF) output at a stable steady-state level by applying stimulus signals at each half-period and allowing free vibration in alternate half-periods to minimize energy dissipation. This method enhances optomechanical energy accumulation in the QTF, resulting in an approximate 33-fold increase in response speed and a threefold increase in signal intensity compared to conventional BF-QEPAS. We introduce an energy efficiency coefficient <em>K</em> to quantify the relationship between transient signal amplitude and measurement duration, exploring its dependence on the modulation signal's period and duty cycle. Theoretical analyses and numerical simulations demonstrate that the maximum <em>K</em> occurs at a duty cycle of 50 % and an optimized beat frequency Δ<em>f</em> of 30 Hz. Experimental results using methane reveal a detection limit of 2.17 ppm with a rapid response time of 33 ms. The OEE-BF-QEPAS technique exhibits a wide dynamic range with exceptional linearity over five orders of magnitude and a record noise-equivalent normalized absorption (NNEA) coefficient of 9.46 × 10<sup>−10</sup> W cm<sup>−1</sup> Hz<sup>−1/2</sup>. Additionally, a self-calibration method is proposed for correcting resonant frequency shifts. The proposed method holds immense potential for applications requiring fast and precise gas detection.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"41 ","pages":"Article 100677"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000946","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional beat frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) are limited by short energy accumulation times and the necessity of a decay period, leading to weaker signals and longer measurement cycles. Herein, we present a novel optomechanical energy-enhanced (OEE-) BF-QEPAS technique for fast and sensitive gas sensing. Our approach employs periodic pulse-width modulation (PWM) of the laser signal with an optimized duty cycle, maintaining the quartz tuning fork's (QTF) output at a stable steady-state level by applying stimulus signals at each half-period and allowing free vibration in alternate half-periods to minimize energy dissipation. This method enhances optomechanical energy accumulation in the QTF, resulting in an approximate 33-fold increase in response speed and a threefold increase in signal intensity compared to conventional BF-QEPAS. We introduce an energy efficiency coefficient K to quantify the relationship between transient signal amplitude and measurement duration, exploring its dependence on the modulation signal's period and duty cycle. Theoretical analyses and numerical simulations demonstrate that the maximum K occurs at a duty cycle of 50 % and an optimized beat frequency Δf of 30 Hz. Experimental results using methane reveal a detection limit of 2.17 ppm with a rapid response time of 33 ms. The OEE-BF-QEPAS technique exhibits a wide dynamic range with exceptional linearity over five orders of magnitude and a record noise-equivalent normalized absorption (NNEA) coefficient of 9.46 × 10−10 W cm−1 Hz−1/2. Additionally, a self-calibration method is proposed for correcting resonant frequency shifts. The proposed method holds immense potential for applications requiring fast and precise gas detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于快速灵敏气体传感的光机械能量增强型 BF-QEPAS。
传统的拍频石英增强光声光谱(BF-QEPAS)由于能量积累时间短和必须有衰减期而受到限制,导致信号较弱和测量周期较长。在此,我们提出了一种新型光机械能量增强(OEE-)BF-QEPAS 技术,用于快速、灵敏的气体传感。我们的方法采用优化占空比的激光信号周期性脉宽调制 (PWM),通过在每个半周期应用刺激信号,将石英音叉 (QTF) 的输出维持在稳定的稳态水平,并允许在交替的半周期内自由振动,以最大限度地减少能量耗散。与传统的 BF-QEPAS 相比,这种方法增强了 QTF 中的光机械能积累,使响应速度提高了约 33 倍,信号强度提高了 3 倍。我们引入了能效系数 K 来量化瞬态信号振幅与测量持续时间之间的关系,并探讨了它与调制信号周期和占空比之间的关系。理论分析和数值模拟表明,最大 K 出现在占空比为 50% 和优化节拍频率 Δf 为 30 Hz 时。使用甲烷进行的实验结果表明,检测极限为 2.17 ppm,快速反应时间为 33 ms。OEE-BF-QEPAS 技术的动态范围很宽,线性度超过五个数量级,噪声等效归一化吸收 (NNEA) 系数为 9.46 × 10-10 W cm-1 Hz-1/2。此外,还提出了一种用于校正谐振频率偏移的自校准方法。所提出的方法在需要快速和精确气体检测的应用中具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photoacoustics
Photoacoustics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍: The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms. Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring. Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed. These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.
期刊最新文献
Improved T-shaped quartz tuning fork with isosceles-trapezoidal grooves optimized for quartz-enhanced photoacoustic spectroscopy Classification and risk assessment of ovarian-adnexal lesions using parametric and radiomic analysis of co-registered ultrasound-photoacoustic tomographic images Compact and full-range carbon dioxide sensor using photoacoustic and resonance dependent modes Optomechanical energy enhanced BF-QEPAS for fast and sensitive gas sensing Dichroism-sensitive photoacoustic imaging for in-depth estimation of the optic axis in fibrous tissue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1