Enhanced UV–Vis Rejection Ratio in Metal/BaTiO3/β-Ga2O3 Solar-Blind Photodetectors

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-12-31 DOI:10.1002/aelm.202400552
Nathan Wriedt, Lingyu Meng, Dong Su Yu, Chris Chae, Kyle Liddy, Ashok Dheenan, Sushovan Dhara, Roberto C. Myers, Oleg Maksimov, Richard Blakeley, Sanjay Krishna, Jinwoo Hwang, Hongping Zhao, Joe McGlone, Siddharth Rajan
{"title":"Enhanced UV–Vis Rejection Ratio in Metal/BaTiO3/β-Ga2O3 Solar-Blind Photodetectors","authors":"Nathan Wriedt,&nbsp;Lingyu Meng,&nbsp;Dong Su Yu,&nbsp;Chris Chae,&nbsp;Kyle Liddy,&nbsp;Ashok Dheenan,&nbsp;Sushovan Dhara,&nbsp;Roberto C. Myers,&nbsp;Oleg Maksimov,&nbsp;Richard Blakeley,&nbsp;Sanjay Krishna,&nbsp;Jinwoo Hwang,&nbsp;Hongping Zhao,&nbsp;Joe McGlone,&nbsp;Siddharth Rajan","doi":"10.1002/aelm.202400552","DOIUrl":null,"url":null,"abstract":"<p>The fabrication and characterization of metal/BaTiO<sub>3</sub>/β-Ga<sub>2</sub>O<sub>3</sub> solar-blind photodetectors are reported. β-Ga<sub>2</sub>O<sub>3</sub> is a promising material for solar-blind photodetectors due to its large bandgap and the availability of low defect-density melt-grown substrates. In this work, structures are introduced that employ high-permittivity dielectric/semiconductor heterojunctions to enhance the performance of a Schottky photodetector. It is shown that integrating the high-k dielectric BaTiO<sub>3</sub> reduces the dark current by ≈10<sup>4</sup>, all but eliminates illumination induced Schottky barrier lowering, and increases the UV–vis rejection ratio by a factor greater than 9 × 10<sup>3</sup> compared to a Schottky photodetector. It is hypothesized that the high permittivity of the dielectric overcomes the influence of self-trapped holes in Ga<sub>2</sub>O<sub>3</sub> to reduce the peak electric field at the dielectric/metal interface, thereby eliminating the effects of Schottky barrier lowering on illuminated β-Ga<sub>2</sub>O<sub>3</sub> photodetectors. Additionally, it is hypothesized that the increase in the UV–vis rejection ratio is caused by the “dead layer” that forms at the BaTiO<sub>3</sub>/Pt interface.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400552","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400552","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The fabrication and characterization of metal/BaTiO3/β-Ga2O3 solar-blind photodetectors are reported. β-Ga2O3 is a promising material for solar-blind photodetectors due to its large bandgap and the availability of low defect-density melt-grown substrates. In this work, structures are introduced that employ high-permittivity dielectric/semiconductor heterojunctions to enhance the performance of a Schottky photodetector. It is shown that integrating the high-k dielectric BaTiO3 reduces the dark current by ≈104, all but eliminates illumination induced Schottky barrier lowering, and increases the UV–vis rejection ratio by a factor greater than 9 × 103 compared to a Schottky photodetector. It is hypothesized that the high permittivity of the dielectric overcomes the influence of self-trapped holes in Ga2O3 to reduce the peak electric field at the dielectric/metal interface, thereby eliminating the effects of Schottky barrier lowering on illuminated β-Ga2O3 photodetectors. Additionally, it is hypothesized that the increase in the UV–vis rejection ratio is caused by the “dead layer” that forms at the BaTiO3/Pt interface.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属/BaTiO3/β - Ga2O3太阳盲光电探测器的UV-Vis抑制比增强
报道了金属/BaTiO3/β - Ga2O3太阳盲光电探测器的制备和表征。β - Ga2O3是一种很有前途的太阳盲光电探测器材料,因为它具有大的带隙和低缺陷密度的熔融生长衬底的可用性。在这项工作中,介绍了采用高介电常数介电/半导体异质结的结构,以提高肖特基光电探测器的性能。结果表明,与肖特基光电探测器相比,集成高k介电BaTiO3使暗电流降低了约104,几乎消除了照明引起的肖特基势垒降低,并使紫外-可见抑制比提高了9 × 103以上。假设电介质的高介电常数克服了Ga2O3中自困空穴的影响,降低了介电/金属界面处的峰值电场,从而消除了肖特基势垒降低对照明β - Ga2O3光电探测器的影响。此外,假设UV-vis排斥比的增加是由BaTiO3/Pt界面上形成的“死层”引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
High-Throughput Production of Electrically Conductive Yarn (E-Yarn) for Smart Textiles Edge of Chaos Theory Unveils the First and Simplest Ever Reported Hodgkin–Huxley Neuristor Ge N-Channel Ferroelectric FET Memory With Al2O3/AlN Interfacial Layer by Microwave Annealing Encapsulated Organohydrogel Couplants for Wearable Ultrasounds Improved Magnetoresistance of Tungsten Telluride and Silver Telluride Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1