pH-regulated Electrokinetic Ion Rectification in SiO2/Al2O3 Heterojunction Membrane Channel

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2025-01-01 DOI:10.1016/j.electacta.2024.145634
Dafeng Yang, Zheng Liu, Nan Qiao, Changzheng Li, Zhongbao Liu, Zhipeng Qie
{"title":"pH-regulated Electrokinetic Ion Rectification in SiO2/Al2O3 Heterojunction Membrane Channel","authors":"Dafeng Yang, Zheng Liu, Nan Qiao, Changzheng Li, Zhongbao Liu, Zhipeng Qie","doi":"10.1016/j.electacta.2024.145634","DOIUrl":null,"url":null,"abstract":"The ion current rectification (ICR) phenomenon is well known due to the diode-like response behavior that attracts increasing research interest. However, most studies focus on the single channel with fixed surface charge, and the dependent ion transport behavior in highly coupled solution-surface-membrane has not been fully studied so far. Herein, a coupled ion transport model in the SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> membrane channel is proposed to investigate the asymmetric response behavior. The results show that SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> membrane enable the negative and positive surface charge that forms a heterojunction channel. This leads to significant ion rectification due to the asymmetrical surface charge property. Besides, the surface property of the membrane is highly regulated by solution pH and the acidic environment is more conducive to the enhancement of asymmetric ion transport. Further study shows that the best heterojunction ratio is 1:1 of the lengths of negative charge regions to that of positive charge regions. The research results provide valuable information on ion transport and nanofluidic devices.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"34 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145634","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The ion current rectification (ICR) phenomenon is well known due to the diode-like response behavior that attracts increasing research interest. However, most studies focus on the single channel with fixed surface charge, and the dependent ion transport behavior in highly coupled solution-surface-membrane has not been fully studied so far. Herein, a coupled ion transport model in the SiO2/Al2O3 membrane channel is proposed to investigate the asymmetric response behavior. The results show that SiO2 and Al2O3 membrane enable the negative and positive surface charge that forms a heterojunction channel. This leads to significant ion rectification due to the asymmetrical surface charge property. Besides, the surface property of the membrane is highly regulated by solution pH and the acidic environment is more conducive to the enhancement of asymmetric ion transport. Further study shows that the best heterojunction ratio is 1:1 of the lengths of negative charge regions to that of positive charge regions. The research results provide valuable information on ion transport and nanofluidic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Prepared Hollow Nanosphere MoO2/rGO Composite for low concentration Dopamine Detection Study of Surface-Active Substances Using Alternating Current Voltammetry and Mercury Electrode by Potentiostat without Phase Sensitivity Modules Iron electrowinning from a nickel refinery residue for sustainable steelmaking Enhancing Ti/SnO2 electrodes for electrocatalytic performance: New insights for modifications EPR/UV–Vis–NIR spectroelectrochemical characterization of 10H-phenothiazinyl-substituted oligothiophenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1