Stress-mediated copper-molybdenum alloy enables boosted hydrogen evolution activity

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2025-01-01 DOI:10.1016/j.actamat.2024.120706
Yuming Xie, Jianing Dong, Yifan Li, Xiaotian Ma, Naijie Wang, Xiangchen Meng, Yongxian Huang
{"title":"Stress-mediated copper-molybdenum alloy enables boosted hydrogen evolution activity","authors":"Yuming Xie, Jianing Dong, Yifan Li, Xiaotian Ma, Naijie Wang, Xiangchen Meng, Yongxian Huang","doi":"10.1016/j.actamat.2024.120706","DOIUrl":null,"url":null,"abstract":"Guided by the Sabatier volcano principle, we designed a severe plastic deformation-based strategy to obtain high-performance metallic electrocatalysts with boosted hydrogen evolution activity. Cu-Mo system was selected due to their opposite Gibbs free energies of adsorbed hydrogen and surface mechanical treatment was utilized to fine-tune the adsorption energy. A surface compressive stress layer with high values of -464±37 MPa was realized under the cryogenic severe plastic deformation process. The treated metallic catalysts exhibit ultra-low overpotential (79±3 mV at 10 mA cm<sup>-2</sup> at the alkaline condition and 31±2 mV at 10 mA cm<sup>-2</sup> at the acidic condition). The effective Tafel slope of acidic hydrogen evolution treated in the cryogenic environment is 141.2 mV decade<sup>-1</sup>, showing a fast Tafel-dominated Volmer-Tafel reaction mechanism. The density function theory calculation showed a transformation of the hydrogen adsorption site with increased external compressive stress, which contributed to the adsorption site adjacent to the supersaturated solid solution Mo atom. Bader charge analyses showed that the Mo atom lost more electrons, causing the surrounding Cu atoms to enter a stronger electronegative state, which significantly enhanced the adsorption capacity of Cu atoms for hydrogen with near-zero adsorption energy.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"208 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120706","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Guided by the Sabatier volcano principle, we designed a severe plastic deformation-based strategy to obtain high-performance metallic electrocatalysts with boosted hydrogen evolution activity. Cu-Mo system was selected due to their opposite Gibbs free energies of adsorbed hydrogen and surface mechanical treatment was utilized to fine-tune the adsorption energy. A surface compressive stress layer with high values of -464±37 MPa was realized under the cryogenic severe plastic deformation process. The treated metallic catalysts exhibit ultra-low overpotential (79±3 mV at 10 mA cm-2 at the alkaline condition and 31±2 mV at 10 mA cm-2 at the acidic condition). The effective Tafel slope of acidic hydrogen evolution treated in the cryogenic environment is 141.2 mV decade-1, showing a fast Tafel-dominated Volmer-Tafel reaction mechanism. The density function theory calculation showed a transformation of the hydrogen adsorption site with increased external compressive stress, which contributed to the adsorption site adjacent to the supersaturated solid solution Mo atom. Bader charge analyses showed that the Mo atom lost more electrons, causing the surrounding Cu atoms to enter a stronger electronegative state, which significantly enhanced the adsorption capacity of Cu atoms for hydrogen with near-zero adsorption energy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Anomalous increase in thermal conductivity of Mg solid solutions by co-doping with two solute elements Hydrogen-assisted spinodal decomposition in a TiNbZrHfTa complex concentrated alloy Superimpositional design of crystallographic textures and macroscopic shapes via metal additive manufacturing—Game-change in component design Stress-mediated copper-molybdenum alloy enables boosted hydrogen evolution activity Kinetics of Ferroelastic Domain Switching with and without Back-Switching Events: A Phase-Field Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1