Yinhua Ni, Haimei Du, Lehui Ke, Liujie Zheng, Sujie Nan, Liyang Ni, Yuxiang Pan, Zhengwei Fu, Qiang He, Juan Jin
{"title":"Gut-kidney interaction reinforces dapagliflozin-mediated alleviation in diabetic nephropathy.","authors":"Yinhua Ni, Haimei Du, Lehui Ke, Liujie Zheng, Sujie Nan, Liyang Ni, Yuxiang Pan, Zhengwei Fu, Qiang He, Juan Jin","doi":"10.1152/ajpcell.00651.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Intestinal microbiota are pathophysiologically involved in diabetic nephropathy (DN). Dapagliflozin, recognized for its blood glucose-lowering effect, has demonstrated efficacy in improving DN. However, the mechanisms beyond glycemic control that mediate the impact of dapagliflozin on DN remain unclear. Here, we investigated the effects of dapagliflozin on DN and gut microbiota, elucidating how it mitigates DN via the gut-kidney axis. Low-dose dapagliflozin markedly ameliorated renal inflammation and fibrosis and improved gut barrier function in high-fat diet (HFD)/streptozotocin (STZ)-induced DN mice and <i>db</i>/<i>db</i> mice without affecting blood glucose levels. These effects were associated with altered gut microbial composition and function. Eradication of the resident microbiota abolished the protective effects of dapagliflozin against kidney injury in DN mice. Moreover, dapagliflozin significantly altered microbial metabolites in DN mice, decreasing argininosuccinic acid (ASA) and palmitic acid (PA), while increasing <i>S</i>-allylcysteine (SAC) levels. ASA and PA increased the expression of renal inflammation- and fibrosis-related markers in HK-2 cells, whereas SAC ameliorated renal damage and altered the microbial composition in a manner similar to dapagliflozin in DN mice. Notably, <i>Muribaculaceae</i> and <i>Desulfovibrionaceae</i> were correlated with the alleviation of DN-associated renal dysfunction by low- and high-dose dapagliflozin treatments in DN mice. These findings demonstrate a potential application of dapagliflozin in managing DN by targeting the gut microbiota.<b>NEW & NOTEWORTHY</b> We demonstrated that dapagliflozin administration alleviated renal inflammation and fibrosis in vivo and in vitro, along with reshaping the gut microbiota composition and altering levels of key microbial metabolites, including argininosuccinic acid (ASA) and palmitic acid (PA), while increasing <i>S</i>-allylcysteine (SAC). Importantly, the genera <i>Muribaculaceae</i> and <i>Desulfovibrionaceae</i> emerged as pivotal microbial genera mediating the protective effects of dapagliflozin against diabetic nephropathy.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C452-C466"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00651.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intestinal microbiota are pathophysiologically involved in diabetic nephropathy (DN). Dapagliflozin, recognized for its blood glucose-lowering effect, has demonstrated efficacy in improving DN. However, the mechanisms beyond glycemic control that mediate the impact of dapagliflozin on DN remain unclear. Here, we investigated the effects of dapagliflozin on DN and gut microbiota, elucidating how it mitigates DN via the gut-kidney axis. Low-dose dapagliflozin markedly ameliorated renal inflammation and fibrosis and improved gut barrier function in high-fat diet (HFD)/streptozotocin (STZ)-induced DN mice and db/db mice without affecting blood glucose levels. These effects were associated with altered gut microbial composition and function. Eradication of the resident microbiota abolished the protective effects of dapagliflozin against kidney injury in DN mice. Moreover, dapagliflozin significantly altered microbial metabolites in DN mice, decreasing argininosuccinic acid (ASA) and palmitic acid (PA), while increasing S-allylcysteine (SAC) levels. ASA and PA increased the expression of renal inflammation- and fibrosis-related markers in HK-2 cells, whereas SAC ameliorated renal damage and altered the microbial composition in a manner similar to dapagliflozin in DN mice. Notably, Muribaculaceae and Desulfovibrionaceae were correlated with the alleviation of DN-associated renal dysfunction by low- and high-dose dapagliflozin treatments in DN mice. These findings demonstrate a potential application of dapagliflozin in managing DN by targeting the gut microbiota.NEW & NOTEWORTHY We demonstrated that dapagliflozin administration alleviated renal inflammation and fibrosis in vivo and in vitro, along with reshaping the gut microbiota composition and altering levels of key microbial metabolites, including argininosuccinic acid (ASA) and palmitic acid (PA), while increasing S-allylcysteine (SAC). Importantly, the genera Muribaculaceae and Desulfovibrionaceae emerged as pivotal microbial genera mediating the protective effects of dapagliflozin against diabetic nephropathy.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.