Aerobic exercise attenuates high-fat diet-induced glycometabolism impairments in skeletal muscle of rat: role of EGR-1/PTP1B signaling pathway.

IF 3.9 2区 医学 Q2 NUTRITION & DIETETICS Nutrition & Metabolism Pub Date : 2024-12-31 DOI:10.1186/s12986-024-00888-8
Liangzhi Zhang, Xiaojie Liu, Jing Hu, Helong Quan, Sang Ki Lee, Mallikarjuna Korivi, Lifeng Wang, Ting Li, Wei Li
{"title":"Aerobic exercise attenuates high-fat diet-induced glycometabolism impairments in skeletal muscle of rat: role of EGR-1/PTP1B signaling pathway.","authors":"Liangzhi Zhang, Xiaojie Liu, Jing Hu, Helong Quan, Sang Ki Lee, Mallikarjuna Korivi, Lifeng Wang, Ting Li, Wei Li","doi":"10.1186/s12986-024-00888-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Impaired skeletal muscle glycogen synthesis contributes to insulin resistance (IR). Aerobic exercise reported to ameliorate IR by augmenting insulin signaling, however the detailed mechanism behind this improvement remains unclear. This study investigated whether aerobic exercise enhances glycogen anabolism and insulin sensitivity via EGR-1/PTP1B signaling pathway in skeletal muscle of rats.</p><p><strong>Methods: </strong>Sprague-Dawley rats fed a high-fat diet (HFD), and performed treadmill exercise training for 6-week. Oral glucose tolerance test was conducted to confirm the IR. Periodic Acid-Schiff (PAS) staining and anthrone colorimetry were used to assess the skeletal muscle glycogen. RT-qPCR, western blot, and immunofluorescence were used to detect the EGR-1/PTP1B pathway and associated signaling molecules.</p><p><strong>Results: </strong>We found that exercise training significantly decreased blood glucose, insulin, and homeostasis model assessment for IR (HOMA-IR) against HFD-induced elevation. Decreased muscle glycogen content due to HFD was significantly restored after exercise training. Exercise training promoted mRNA expressions of Irs1, Akt, and Glut4, while inhibited Gsk-3β expression against HFD. Next, the decreased IRS1 (phosphorylated/total), AKT (phosphorylated/total), and GLUT4, and increased GSK-3β proteins with HFD were significantly reversed by exercise. Furthermore, HFD-induced overexpression of EGR-1 and PTP1B evidenced by mRNA, protein, and immunofluorescence intensity, were substantially inhibited by exercise, which may contribute to promote insulin sensitivity and glycogen anabolism.</p><p><strong>Conclusions: </strong>Aerobic exercise training promotes insulin sensitivity and skeletal muscle glycogen synthesis in HFD-fed rats. The beneficial effects of exercise might be mediated by EGR-1/PTP1B signaling pathway in skeletal muscle, however further studies are necessary to confirm this mechanism.</p>","PeriodicalId":19196,"journal":{"name":"Nutrition & Metabolism","volume":"21 1","pages":"113"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686907/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12986-024-00888-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Impaired skeletal muscle glycogen synthesis contributes to insulin resistance (IR). Aerobic exercise reported to ameliorate IR by augmenting insulin signaling, however the detailed mechanism behind this improvement remains unclear. This study investigated whether aerobic exercise enhances glycogen anabolism and insulin sensitivity via EGR-1/PTP1B signaling pathway in skeletal muscle of rats.

Methods: Sprague-Dawley rats fed a high-fat diet (HFD), and performed treadmill exercise training for 6-week. Oral glucose tolerance test was conducted to confirm the IR. Periodic Acid-Schiff (PAS) staining and anthrone colorimetry were used to assess the skeletal muscle glycogen. RT-qPCR, western blot, and immunofluorescence were used to detect the EGR-1/PTP1B pathway and associated signaling molecules.

Results: We found that exercise training significantly decreased blood glucose, insulin, and homeostasis model assessment for IR (HOMA-IR) against HFD-induced elevation. Decreased muscle glycogen content due to HFD was significantly restored after exercise training. Exercise training promoted mRNA expressions of Irs1, Akt, and Glut4, while inhibited Gsk-3β expression against HFD. Next, the decreased IRS1 (phosphorylated/total), AKT (phosphorylated/total), and GLUT4, and increased GSK-3β proteins with HFD were significantly reversed by exercise. Furthermore, HFD-induced overexpression of EGR-1 and PTP1B evidenced by mRNA, protein, and immunofluorescence intensity, were substantially inhibited by exercise, which may contribute to promote insulin sensitivity and glycogen anabolism.

Conclusions: Aerobic exercise training promotes insulin sensitivity and skeletal muscle glycogen synthesis in HFD-fed rats. The beneficial effects of exercise might be mediated by EGR-1/PTP1B signaling pathway in skeletal muscle, however further studies are necessary to confirm this mechanism.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称产品信息其他信息采购帮参考价格
索莱宝 glycogen assay kit
BC0345
来源期刊
Nutrition & Metabolism
Nutrition & Metabolism 医学-营养学
CiteScore
8.40
自引率
0.00%
发文量
78
审稿时长
4-8 weeks
期刊介绍: Nutrition & Metabolism publishes studies with a clear focus on nutrition and metabolism with applications ranging from nutrition needs, exercise physiology, clinical and population studies, as well as the underlying mechanisms in these aspects. The areas of interest for Nutrition & Metabolism encompass studies in molecular nutrition in the context of obesity, diabetes, lipedemias, metabolic syndrome and exercise physiology. Manuscripts related to molecular, cellular and human metabolism, nutrient sensing and nutrient–gene interactions are also in interest, as are submissions that have employed new and innovative strategies like metabolomics/lipidomics or other omic-based biomarkers to predict nutritional status and metabolic diseases. Key areas we wish to encourage submissions from include: -how diet and specific nutrients interact with genes, proteins or metabolites to influence metabolic phenotypes and disease outcomes; -the role of epigenetic factors and the microbiome in the pathogenesis of metabolic diseases and their influence on metabolic responses to diet and food components; -how diet and other environmental factors affect epigenetics and microbiota; the extent to which genetic and nongenetic factors modify personal metabolic responses to diet and food compositions and the mechanisms involved; -how specific biologic networks and nutrient sensing mechanisms attribute to metabolic variability.
期刊最新文献
Aerobic exercise attenuates high-fat diet-induced glycometabolism impairments in skeletal muscle of rat: role of EGR-1/PTP1B signaling pathway. Correction: Impact of fish oil supplementation on plasma levels of highly unsaturated fatty acid-containing lipid classes and molecular species in American football athletes. Correction: The association between age of menopause and type 2 diabetes: a systematic review and meta-analysis. Relationships between the Planetary Health Diet Index, its food groups, and polygenic risk of obesity in the CARTaGENE cohort. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1