A self-assembling nanoplatform for pyroptosis and ferroptosis enhanced cancer photoimmunotherapy

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2025-01-02 DOI:10.1038/s41377-024-01673-1
Zhichao Wang, Yuqi Tang, Quan Li
{"title":"A self-assembling nanoplatform for pyroptosis and ferroptosis enhanced cancer photoimmunotherapy","authors":"Zhichao Wang, Yuqi Tang, Quan Li","doi":"10.1038/s41377-024-01673-1","DOIUrl":null,"url":null,"abstract":"<p>The microenvironment of immunosuppression and low immunogenicity of tumor cells has led to unsatisfactory therapeutic effects of the currently developed nanoplatforms. Immunogenic cell death, such as pyroptosis and ferroptosis, can efficiently boost antitumor immunity. However, the exploration of nanoplatform for dual function inducers and combined immune activators that simultaneously trigger pyroptosis and ferroptosis remains limited. Herein, a multifunctional pH-responsive theranostic nanoplatform (M@P) is designed and constructed by self-assembly of aggregation-induced emission photosensitizer MTCN-3 and immunoadjuvant Poly(I: C), which are further encapsulated in amphiphilic polymers. This nanoplatform is found to have the characteristics of cancer cell targeting, pH response, near-infrared fluorescence imaging, and lysosome targeting. Therefore, after targeting lysosomes, M@P can cause lysosome dysfunction through the generation of reactive oxygen species and heat under light irradiation, triggering pyroptosis and ferroptosis of tumor cells, achieving immunogenic cell death, and further enhancing immunotherapy through the combined effect with the immunoadjuvant Poly(I: C). The anti-tumor immunotherapy effect of M@P has been further demonstrated in in vivo antitumor experiment of 4T1 tumor-bearing mouse model with poor immunogenicity. This research would provide an impetus as well as a novel strategy for dual function inducers and combined immune activators enhanced photoimmunotherapy.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"55 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01673-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The microenvironment of immunosuppression and low immunogenicity of tumor cells has led to unsatisfactory therapeutic effects of the currently developed nanoplatforms. Immunogenic cell death, such as pyroptosis and ferroptosis, can efficiently boost antitumor immunity. However, the exploration of nanoplatform for dual function inducers and combined immune activators that simultaneously trigger pyroptosis and ferroptosis remains limited. Herein, a multifunctional pH-responsive theranostic nanoplatform (M@P) is designed and constructed by self-assembly of aggregation-induced emission photosensitizer MTCN-3 and immunoadjuvant Poly(I: C), which are further encapsulated in amphiphilic polymers. This nanoplatform is found to have the characteristics of cancer cell targeting, pH response, near-infrared fluorescence imaging, and lysosome targeting. Therefore, after targeting lysosomes, M@P can cause lysosome dysfunction through the generation of reactive oxygen species and heat under light irradiation, triggering pyroptosis and ferroptosis of tumor cells, achieving immunogenic cell death, and further enhancing immunotherapy through the combined effect with the immunoadjuvant Poly(I: C). The anti-tumor immunotherapy effect of M@P has been further demonstrated in in vivo antitumor experiment of 4T1 tumor-bearing mouse model with poor immunogenicity. This research would provide an impetus as well as a novel strategy for dual function inducers and combined immune activators enhanced photoimmunotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
焦亡和铁亡的自组装纳米平台增强了癌症光免疫治疗
肿瘤细胞的免疫抑制微环境和低免疫原性导致目前开发的纳米平台的治疗效果不理想。免疫原性细胞死亡,如焦亡和铁亡,可以有效地增强抗肿瘤免疫。然而,双功能诱导剂和联合免疫激活剂同时触发焦亡和铁亡的纳米平台的探索仍然有限。本文将聚集诱导发射光敏剂MTCN-3和免疫佐剂Poly(I: C)自组装,并将其包裹在两亲性聚合物中,设计并构建了多功能ph响应治疗纳米平台(M@P)。发现该纳米平台具有癌细胞靶向、pH响应、近红外荧光成像和溶酶体靶向的特点。因此,M@P靶向溶酶体后,可通过在光照射下产生活性氧和发热,引起溶酶体功能障碍,引发肿瘤细胞焦亡和铁亡,实现免疫原性细胞死亡,并通过与免疫佐剂Poly(I)的联合作用,进一步增强免疫治疗效果。C).在免疫原性较差的4T1荷瘤小鼠模型体内抗肿瘤实验中,进一步证实了M@P的抗肿瘤免疫治疗作用。本研究将为双功能诱导剂和联合免疫激活剂增强光免疫治疗提供新的策略和动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Innovations in bulk photovoltaics: design strategies for boosted photocurrent Microcavity optomechanical magnetometry with picotesla-sensitivity Dispersive optical activity for spectro-polarimetric imaging “QuanTour” illuminates Europe with single photons: celebrating the International Year of Quantum Science and Technology 2025 Compact and reciprocal probe-signal-integrated rotational Doppler velocimetry with fiber-sculpted light
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1