Zher Yin Tan, Joel K.A. Adade, Xiebin Gu, Cody J.S. Hecht, Michael Salcius, Bingqi Tong, Shuang Liu, Seungmin Hwang, Frédéric J. Zécri, Daniel B. Graham, Stuart L. Schreiber, Ramnik J. Xavier
{"title":"Development of an FKBP12-recruiting chemical-induced proximity DNA-encoded library and its application to discover an autophagy potentiator","authors":"Zher Yin Tan, Joel K.A. Adade, Xiebin Gu, Cody J.S. Hecht, Michael Salcius, Bingqi Tong, Shuang Liu, Seungmin Hwang, Frédéric J. Zécri, Daniel B. Graham, Stuart L. Schreiber, Ramnik J. Xavier","doi":"10.1016/j.chembiol.2024.12.002","DOIUrl":null,"url":null,"abstract":"Chemical inducers of proximity (CIPs) are molecules that recruit one protein to another and introduce new functionalities toward modulating protein states and activities. While CIP-mediated recruitment of E3 ligases is widely exploited for the development of degraders, other therapeutic modalities remain underexplored. We describe a non-degrader CIP-DNA-encoded library (CIP-DEL) that recruits FKBP12 to target proteins using non-traditional acyclic structures, with an emphasis on introducing stereochemically diverse and rigid connectors to attach the combinatorial library. We deployed this strategy to modulate <em>ATG16L1</em> T300A, which confers genetic susceptibility to Crohn’s disease (CD), and identified a compound that stabilizes the variant protein against caspase-3 (Casp3) cleavage in a FKBP12-independent manner. We demonstrate in cellular models that this compound potentiates autophagy, and reverses the xenophagy defects as well as increased cytokine secretion characteristic of <em>ATG16L1</em> T300A. This study provides a platform to access unexplored chemical space for CIP design to develop therapeutic modalities guided by human genetics.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"16 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.chembiol.2024.12.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical inducers of proximity (CIPs) are molecules that recruit one protein to another and introduce new functionalities toward modulating protein states and activities. While CIP-mediated recruitment of E3 ligases is widely exploited for the development of degraders, other therapeutic modalities remain underexplored. We describe a non-degrader CIP-DNA-encoded library (CIP-DEL) that recruits FKBP12 to target proteins using non-traditional acyclic structures, with an emphasis on introducing stereochemically diverse and rigid connectors to attach the combinatorial library. We deployed this strategy to modulate ATG16L1 T300A, which confers genetic susceptibility to Crohn’s disease (CD), and identified a compound that stabilizes the variant protein against caspase-3 (Casp3) cleavage in a FKBP12-independent manner. We demonstrate in cellular models that this compound potentiates autophagy, and reverses the xenophagy defects as well as increased cytokine secretion characteristic of ATG16L1 T300A. This study provides a platform to access unexplored chemical space for CIP design to develop therapeutic modalities guided by human genetics.
Cell Chemical BiologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍:
Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.