Design and function of thermoresponsive-ultrafast stiffening suspension formulations for 3D printing

IF 10.8 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Cement & concrete composites Pub Date : 2025-01-02 DOI:10.1016/j.cemconcomp.2024.105905
Sharu Bhagavathi Kandy , Sebastian Remke , Thiyagarajan Ranganathan , Shubham Kiran Wani , Xiaodi Dai , Narayanan Neithalath , Aditya Kumar , Mathieu Bauchy , Edward Garboczi , Torben Gädt , Samanvaya Srivastava , Gaurav Sant
{"title":"Design and function of thermoresponsive-ultrafast stiffening suspension formulations for 3D printing","authors":"Sharu Bhagavathi Kandy ,&nbsp;Sebastian Remke ,&nbsp;Thiyagarajan Ranganathan ,&nbsp;Shubham Kiran Wani ,&nbsp;Xiaodi Dai ,&nbsp;Narayanan Neithalath ,&nbsp;Aditya Kumar ,&nbsp;Mathieu Bauchy ,&nbsp;Edward Garboczi ,&nbsp;Torben Gädt ,&nbsp;Samanvaya Srivastava ,&nbsp;Gaurav Sant","doi":"10.1016/j.cemconcomp.2024.105905","DOIUrl":null,"url":null,"abstract":"<div><div>An inability to accurately control the rate and extent of solidification of cementitious suspensions is a major impediment to creating geometrically complex structural shapes via 3D printing. In this work, we have developed a thermoresponsive rapid stiffening system that will stiffen suspensions of minerals such as quartz, limestone, portlandite, and Ordinary Portland Cement (OPC) over a wide pH range. When exposed to trigger temperatures between 40 °C and 70 °C, the polymer binder system undergoes a thermally triggered free radical polymerization (FRP) reaction, leading to an ultrafast stiffening of the suspension at an average rate on the order of 1 kPa/s and achieving MPa-level strength in less than a minute. The cured composites exhibit flexural strength and strain capacity far greater than OPC-based composites (<span><math><mrow><msub><mi>σ</mi><mi>f</mi></msub></mrow></math></span> <span><math><mrow><mo>∼</mo></mrow></math></span> 25 MPa, <span><math><mrow><msub><mi>γ</mi><mi>f</mi></msub></mrow></math></span> <span><math><mrow><mo>&gt;</mo></mrow></math></span> 1 %). We successfully demonstrated 3D printing using these engineered slurries, showcasing their thermal response, thermal latency, and printability, thereby validating our design approach and its potential for diverse applications. These thermoresponsive slurries facilitate freestyle printing, non-horizontal printing, and the creation of complex geometries with high overhangs. This approach provides a means to surmount the significant limitations of extrusion-based 3D printing using particulate suspensions and open up new possibilities in integrating design and production.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"157 ","pages":"Article 105905"},"PeriodicalIF":10.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524004785","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An inability to accurately control the rate and extent of solidification of cementitious suspensions is a major impediment to creating geometrically complex structural shapes via 3D printing. In this work, we have developed a thermoresponsive rapid stiffening system that will stiffen suspensions of minerals such as quartz, limestone, portlandite, and Ordinary Portland Cement (OPC) over a wide pH range. When exposed to trigger temperatures between 40 °C and 70 °C, the polymer binder system undergoes a thermally triggered free radical polymerization (FRP) reaction, leading to an ultrafast stiffening of the suspension at an average rate on the order of 1 kPa/s and achieving MPa-level strength in less than a minute. The cured composites exhibit flexural strength and strain capacity far greater than OPC-based composites (σf 25 MPa, γf > 1 %). We successfully demonstrated 3D printing using these engineered slurries, showcasing their thermal response, thermal latency, and printability, thereby validating our design approach and its potential for diverse applications. These thermoresponsive slurries facilitate freestyle printing, non-horizontal printing, and the creation of complex geometries with high overhangs. This approach provides a means to surmount the significant limitations of extrusion-based 3D printing using particulate suspensions and open up new possibilities in integrating design and production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 3D 打印的热粘弹性超快加硬悬浮配方的设计和功能
无法准确控制胶凝悬浮液的凝固速度和程度是通过3D打印创建几何复杂结构形状的主要障碍。在这项工作中,我们开发了一种热响应快速硬化系统,可以在很宽的pH范围内硬化矿物悬浮物,如石英、石灰石、波特兰石和普通波特兰水泥(OPC)。当暴露在40°C至70°C的触发温度下时,聚合物粘合剂系统会发生热触发自由基聚合(FRP)反应,导致悬浮液以平均1kpa /s的速度进行超快速硬化,并在不到一分钟的时间内达到mpa级别的强度。固化复合材料的抗弯强度和应变能力远高于opc基复合材料(σf ~ 25 MPa, γf>;1%)。我们成功地演示了使用这些工程浆料的3D打印,展示了它们的热响应、热延迟和可打印性,从而验证了我们的设计方法及其在各种应用中的潜力。这些热敏浆液有利于自由打印,非水平打印,以及高悬垂复杂几何形状的创建。这种方法提供了一种方法,可以克服使用颗粒悬浮液的挤压式3D打印的重大限制,并为集成设计和生产开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cement & concrete composites
Cement & concrete composites 工程技术-材料科学:复合
CiteScore
18.70
自引率
11.40%
发文量
459
审稿时长
65 days
期刊介绍: Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.
期刊最新文献
Editorial Board Optimization and performance regulation of pipe piles based on nano-calcium silicate hydrated (n-C-S-H) Digital-volume-correlation-assisted crack extraction using X-ray computed tomography images of cementitious materials New insights into the retardation mechanism of phosphorus slag on the early cement hydration Tensile behavior simulation of ECC/SHCC at subzero temperatures based on a fiber/interface combination constitutive model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1