{"title":"Improving Electromyography Electrode Placement Accuracy in Transtibial Amputees: A Comparative Study of Ultrasound and Palpation Methods","authors":"Faranak Rostamjoud;Friðrika Björk Þorkelsdóttir;Atli Örn Sverrisson;Sigurður Brynjólfsson;Kristín Briem","doi":"10.1109/TNSRE.2024.3520720","DOIUrl":null,"url":null,"abstract":"In the past decade, significant focus has been on electromyography (EMG) control of prostheses in transtibial amputees (TTAs). Reliable signal acquisition requires accurate EMG electrode placement. Conventional electrode placement methods are challenging due to altered post-surgical anatomy. This study investigated the application of ultrasound imaging for placement of EMG electrodes in TTAs. Four residual limb muscles, Tibialis Anterior (TA), Peroneus Longus (PL), Gastrocnemius Medial (GM), and Gastrocnemius Lateral (GL), were examined in 9 unilateral TTAs. Ultrasound was used to identify each muscle belly’s thickest part and fiber orientation. A Certified Prosthetist Orthotist (CPO) then performed palpation to identify muscle bellies, blinded to ultrasound findings. Distances between ultrasound- and palpation-identified spots were measured. EMG data were contrasted between methods in terms of root mean square (RMS) amplitude and signal-to-noise ratio (SNR). The results indicated that Ultrasound-guided placement produced slightly higher, though non-significant, signal amplitudes (p =0.06) and significantly higher SNR (p =0.04). Moreover, palpation misidentified muscles in four cases. In 72.2% of cases, the distance between ultrasound- and palpation-identified spots was more than 10 mm. The mean distance was the greatest for PL and GL. Relying on palpation to identify PL and TA in TTAs may provide irrelevant EMG due to erroneous placement. Using ultrasound imaging can avoid this and, in addition to accurate muscle identification, may improve signal amplitude and SNR. In conclusion, ultrasound imaging is a valuable tool for enhancing the accuracy of EMG electrode placement in TTAs, which may lead to better prosthetic control outcomes.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"133-139"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10810499","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10810499/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the past decade, significant focus has been on electromyography (EMG) control of prostheses in transtibial amputees (TTAs). Reliable signal acquisition requires accurate EMG electrode placement. Conventional electrode placement methods are challenging due to altered post-surgical anatomy. This study investigated the application of ultrasound imaging for placement of EMG electrodes in TTAs. Four residual limb muscles, Tibialis Anterior (TA), Peroneus Longus (PL), Gastrocnemius Medial (GM), and Gastrocnemius Lateral (GL), were examined in 9 unilateral TTAs. Ultrasound was used to identify each muscle belly’s thickest part and fiber orientation. A Certified Prosthetist Orthotist (CPO) then performed palpation to identify muscle bellies, blinded to ultrasound findings. Distances between ultrasound- and palpation-identified spots were measured. EMG data were contrasted between methods in terms of root mean square (RMS) amplitude and signal-to-noise ratio (SNR). The results indicated that Ultrasound-guided placement produced slightly higher, though non-significant, signal amplitudes (p =0.06) and significantly higher SNR (p =0.04). Moreover, palpation misidentified muscles in four cases. In 72.2% of cases, the distance between ultrasound- and palpation-identified spots was more than 10 mm. The mean distance was the greatest for PL and GL. Relying on palpation to identify PL and TA in TTAs may provide irrelevant EMG due to erroneous placement. Using ultrasound imaging can avoid this and, in addition to accurate muscle identification, may improve signal amplitude and SNR. In conclusion, ultrasound imaging is a valuable tool for enhancing the accuracy of EMG electrode placement in TTAs, which may lead to better prosthetic control outcomes.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.