{"title":"LAST-PAIN: Learning Adaptive Spike Thresholds for Low Back Pain Biosignals Classification","authors":"Freek Hens;Mohammad Mahdi Dehshibi;Leila Bagheriye;Ana Tajadura-Jiménez;Mahyar Shahsavari","doi":"10.1109/TNSRE.2025.3546682","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNNs) present the potential for ultra-low-power computation, especially when implemented on dedicated neuromorphic hardware. However, a significant challenge is the efficient conversion of continuous real-world data into the discrete spike trains required by SNNs. In this paper, we introduce Learning Adaptive Spike Thresholds (LAST), a novel, trainable encoding strategy designed to address this challenge. The LAST encoder learns adaptive thresholds to transform continuous signals of varying dimensionality-ranging from time series data to high dimensional tensors-into sparse spike trains. Our proposed encoder effectively preserves temporal dynamics and adapts to the characteristics of the input. We validate the LAST approach in a demanding healthcare application using the EmoPain dataset. This dataset contains multimodal biosignal analysis for assessing chronic lower back pain (CLBP). Despite the dataset’s small sample size and class imbalance, our LAST-driven SNN framework achieves a competitive Matthews Correlation Coefficient of 0.44 and an accuracy of 80.43% in CLBP classification. The experimental results also indicate that the same framework can achieve an F1-score of 0.65 in detecting protective behaviour. Furthermore, the LAST encoder outperforms conventional rate and latency-based encodings while maintaining sparse spike representations. This achievement shows promises for energy-efficient and real-time biosignal processing in resource-limited environments.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"1038-1047"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908225","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10908225/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spiking neural networks (SNNs) present the potential for ultra-low-power computation, especially when implemented on dedicated neuromorphic hardware. However, a significant challenge is the efficient conversion of continuous real-world data into the discrete spike trains required by SNNs. In this paper, we introduce Learning Adaptive Spike Thresholds (LAST), a novel, trainable encoding strategy designed to address this challenge. The LAST encoder learns adaptive thresholds to transform continuous signals of varying dimensionality-ranging from time series data to high dimensional tensors-into sparse spike trains. Our proposed encoder effectively preserves temporal dynamics and adapts to the characteristics of the input. We validate the LAST approach in a demanding healthcare application using the EmoPain dataset. This dataset contains multimodal biosignal analysis for assessing chronic lower back pain (CLBP). Despite the dataset’s small sample size and class imbalance, our LAST-driven SNN framework achieves a competitive Matthews Correlation Coefficient of 0.44 and an accuracy of 80.43% in CLBP classification. The experimental results also indicate that the same framework can achieve an F1-score of 0.65 in detecting protective behaviour. Furthermore, the LAST encoder outperforms conventional rate and latency-based encodings while maintaining sparse spike representations. This achievement shows promises for energy-efficient and real-time biosignal processing in resource-limited environments.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.