Locomotion Joint Angle and Moment Estimation With Soft Wearable Sensors for Personalized Exosuit Control

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Neural Systems and Rehabilitation Engineering Pub Date : 2025-03-03 DOI:10.1109/TNSRE.2025.3547361
Luying Feng;Lianghong Gui;Wenzhu Xu;Xiang Wang;Canjun Yang;Yaochu Jin;Wei Yang
{"title":"Locomotion Joint Angle and Moment Estimation With Soft Wearable Sensors for Personalized Exosuit Control","authors":"Luying Feng;Lianghong Gui;Wenzhu Xu;Xiang Wang;Canjun Yang;Yaochu Jin;Wei Yang","doi":"10.1109/TNSRE.2025.3547361","DOIUrl":null,"url":null,"abstract":"Recent advancements in flexible sensing and machine learning have positioned soft sensors as promising alternatives to traditional methods for human posture detection. However, most research has centered on calibration, with limited progress in practical applications due to the challenges posed by diverse users and complex scenarios such as human-robot interaction. To address these challenges, this study developed a flexible sensing system capable of accurately predicting joint angles and moments, and validated it through a flexible exosuit. To improve the model’s accuracy and generalization, gait data from eight participants with varying walking patterns were collected. Calibrated data were used as static features and trained alongside dynamic features. The model was pre-trained on a large open-source dataset and then fine-tuned for our own data. Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) models were specifically applied to estimate knee joint angles and hip joint moments, achieving a Mean Absolute Error (MAE) of 4.43° and 0.12 Nm/kg, respectively. A flexible exosuit was then developed to provide assistance based on real-time estimation of hip joint moments, enabling personalized control. Testing with five volunteers showed reduced muscle activation, while user satisfaction surveys indicated significant improvements in mobility and comfort. This research not only enhances the practical application of soft sensors but also demonstrates their potential in advancing human-robot interaction.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"1048-1060"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909362","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10909362/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in flexible sensing and machine learning have positioned soft sensors as promising alternatives to traditional methods for human posture detection. However, most research has centered on calibration, with limited progress in practical applications due to the challenges posed by diverse users and complex scenarios such as human-robot interaction. To address these challenges, this study developed a flexible sensing system capable of accurately predicting joint angles and moments, and validated it through a flexible exosuit. To improve the model’s accuracy and generalization, gait data from eight participants with varying walking patterns were collected. Calibrated data were used as static features and trained alongside dynamic features. The model was pre-trained on a large open-source dataset and then fine-tuned for our own data. Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) models were specifically applied to estimate knee joint angles and hip joint moments, achieving a Mean Absolute Error (MAE) of 4.43° and 0.12 Nm/kg, respectively. A flexible exosuit was then developed to provide assistance based on real-time estimation of hip joint moments, enabling personalized control. Testing with five volunteers showed reduced muscle activation, while user satisfaction surveys indicated significant improvements in mobility and comfort. This research not only enhances the practical application of soft sensors but also demonstrates their potential in advancing human-robot interaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
期刊最新文献
Enhancing Manual Wheelchair Propulsion: Incremental Assistance Levels of Pushrim-Activated Power-Assist Proportionally Reduce Physiological and Biomechanical Demands in Able-Bodied Participants. Improving Acceptance to Sensory Substitution: A study on the V2A-SS Learning Model based on Information Processing Learning Theory. The More, the Better? Evaluating the Role of EEG Preprocessing for Deep Learning Applications Locomotion Joint Angle and Moment Estimation With Soft Wearable Sensors for Personalized Exosuit Control LAST-PAIN: Learning Adaptive Spike Thresholds for Low Back Pain Biosignals Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1