Song He, Xuhang Jiang, Jiahao Liu, Qinglin Yang, Yao-Qi Zhang
{"title":"Differential equations and recursive solutions for cosmological amplitudes","authors":"Song He, Xuhang Jiang, Jiahao Liu, Qinglin Yang, Yao-Qi Zhang","doi":"10.1007/JHEP01(2025)001","DOIUrl":null,"url":null,"abstract":"<p>Recently considerable efforts have been devoted to computing cosmological correlators and the corresponding wavefunction coefficients, as well as understanding their analytical structures. In this note, we revisit the computation of these “cosmological amplitudes” associated with any tree or loop graph for conformal scalars with time-dependent interactions in the power-law FRW universe, directly in terms of iterated time integrals. We start by decomposing any such cosmological amplitude (for loop graph, the “integrand” prior to loop integrations) as a linear combination of <i>basic time integrals</i>, one for each <i>directed graph</i>. We derive remarkably simple first-order differential equations involving such time integrals with edges “contracted” one at a time, which can be solved recursively and the solution takes the form of Euler-Mellin integrals/generalized hypergeometric functions. By combining such equations, we then derive a complete system of differential equations for all time integrals needed for a given graph. Our method works for any graph: for a tree graph with <i>n</i> nodes, this system can be transformed into the <i>canonical differential equations</i> of size 4<sup><i>n</i>−1</sup> equivalent to the graphic rules derived recently , and we also derive the system of differential equations for loop integrands e.g. of all-loop two-site graphs and one-loop <i>n</i>-gon graphs. Finally, we show how the differential equations truncate for the de Sitter (dS) case (in a way similar to differential equations for Feynman integrals truncate for integer dimensions), which immediately yields the complete symbol for the dS amplitude with interesting structures e.g. for <i>n</i>-site chains and <i>n</i>-gon cases.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)001.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP01(2025)001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Recently considerable efforts have been devoted to computing cosmological correlators and the corresponding wavefunction coefficients, as well as understanding their analytical structures. In this note, we revisit the computation of these “cosmological amplitudes” associated with any tree or loop graph for conformal scalars with time-dependent interactions in the power-law FRW universe, directly in terms of iterated time integrals. We start by decomposing any such cosmological amplitude (for loop graph, the “integrand” prior to loop integrations) as a linear combination of basic time integrals, one for each directed graph. We derive remarkably simple first-order differential equations involving such time integrals with edges “contracted” one at a time, which can be solved recursively and the solution takes the form of Euler-Mellin integrals/generalized hypergeometric functions. By combining such equations, we then derive a complete system of differential equations for all time integrals needed for a given graph. Our method works for any graph: for a tree graph with n nodes, this system can be transformed into the canonical differential equations of size 4n−1 equivalent to the graphic rules derived recently , and we also derive the system of differential equations for loop integrands e.g. of all-loop two-site graphs and one-loop n-gon graphs. Finally, we show how the differential equations truncate for the de Sitter (dS) case (in a way similar to differential equations for Feynman integrals truncate for integer dimensions), which immediately yields the complete symbol for the dS amplitude with interesting structures e.g. for n-site chains and n-gon cases.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).