{"title":"The edge of random tensor eigenvalues with deviation","authors":"Nicolas Delporte, Naoki Sasakura","doi":"10.1007/JHEP01(2025)071","DOIUrl":null,"url":null,"abstract":"<p>The largest eigenvalue of random tensors is an important feature of systems involving disorder, equivalent to the ground state energy of glassy systems or to the injective norm of quantum states. For symmetric Gaussian random tensors of order 3 and of size <i>N</i>, in the presence of a Gaussian noise, continuing the work [1], we compute the genuine and signed eigenvalue distributions, using field theoretic methods at large <i>N</i> combined with earlier rigorous results of [2]. We characterize the behaviour of the edge of the two distributions as the variance of the noise increases. We find two critical values of the variance, the first of which corresponding to the emergence of an outlier from the main part of the spectrum and the second where this outlier merges with the corresponding largest eigenvalue and they both become complex. We support our claims with Monte Carlo simulations. We believe that our results set the ground for a definition of pseudospectrum of random tensors based on Z-eigenvalues.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)071.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP01(2025)071","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The largest eigenvalue of random tensors is an important feature of systems involving disorder, equivalent to the ground state energy of glassy systems or to the injective norm of quantum states. For symmetric Gaussian random tensors of order 3 and of size N, in the presence of a Gaussian noise, continuing the work [1], we compute the genuine and signed eigenvalue distributions, using field theoretic methods at large N combined with earlier rigorous results of [2]. We characterize the behaviour of the edge of the two distributions as the variance of the noise increases. We find two critical values of the variance, the first of which corresponding to the emergence of an outlier from the main part of the spectrum and the second where this outlier merges with the corresponding largest eigenvalue and they both become complex. We support our claims with Monte Carlo simulations. We believe that our results set the ground for a definition of pseudospectrum of random tensors based on Z-eigenvalues.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).