{"title":"SARS-CoV-2 and HCoV-OC43 regulate host m6A modification via activation of the mTORC1 signaling pathway to facilitate viral replication.","authors":"Shixiong Zhou, Xianfeng Hui, Weiwei Wang, Chunbei Zhao, Meilin Jin, Yali Qin, Mingzhou Chen","doi":"10.1080/22221751.2024.2447620","DOIUrl":null,"url":null,"abstract":"<p><p><b></b>N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotic RNA and is also present in various viral RNAs, where it plays a crucial role in regulating the viral life cycle. However, the molecular mechanisms through which viruses regulate host RNA m6A methylation are not fully understood. In this study, we reveal that SARS-CoV-2 and HCoV-OC43 infection enhance host m6A modification by activating the mTORC1 signaling pathway. Specifically, the viral non-structural protein nsp14 upregulates the expression of S-adenosylmethionine synthase MAT2A in an mTORC1-dependent manner. This mTORC1-MAT2A axis subsequently stimulates the synthesis of S-adenosylmethionine (SAM). The increase of SAM then enhances the m6A methylation of host RNA and facilitates viral replication. Our findings uncover a molecular mechanism by which viruses regulate host m6A methylation and provide insights into how SARS-CoV-2 hijacks host cellular epitranscriptomic modifications to promote its replication.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2447620"},"PeriodicalIF":8.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Microbes & Infections","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/22221751.2024.2447620","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotic RNA and is also present in various viral RNAs, where it plays a crucial role in regulating the viral life cycle. However, the molecular mechanisms through which viruses regulate host RNA m6A methylation are not fully understood. In this study, we reveal that SARS-CoV-2 and HCoV-OC43 infection enhance host m6A modification by activating the mTORC1 signaling pathway. Specifically, the viral non-structural protein nsp14 upregulates the expression of S-adenosylmethionine synthase MAT2A in an mTORC1-dependent manner. This mTORC1-MAT2A axis subsequently stimulates the synthesis of S-adenosylmethionine (SAM). The increase of SAM then enhances the m6A methylation of host RNA and facilitates viral replication. Our findings uncover a molecular mechanism by which viruses regulate host m6A methylation and provide insights into how SARS-CoV-2 hijacks host cellular epitranscriptomic modifications to promote its replication.
期刊介绍:
Emerging Microbes & Infections is a peer-reviewed, open-access journal dedicated to publishing research at the intersection of emerging immunology and microbiology viruses.
The journal's mission is to share information on microbes and infections, particularly those gaining significance in both biological and clinical realms due to increased pathogenic frequency. Emerging Microbes & Infections is committed to bridging the scientific gap between developed and developing countries.
This journal addresses topics of critical biological and clinical importance, including but not limited to:
- Epidemic surveillance
- Clinical manifestations
- Diagnosis and management
- Cellular and molecular pathogenesis
- Innate and acquired immune responses between emerging microbes and their hosts
- Drug discovery
- Vaccine development research
Emerging Microbes & Infections invites submissions of original research articles, review articles, letters, and commentaries, fostering a platform for the dissemination of impactful research in the field.