{"title":"Persistence and/or Senescence: Not So Lasting at Last?","authors":"Clemens A Schmitt","doi":"10.1158/0008-5472.CAN-24-3744","DOIUrl":null,"url":null,"abstract":"<p><p>Therapy-exposed surviving cancer cells may have encountered profound epigenetic remodeling that renders these drug-tolerant persisters candidate drivers of particularly aggressive relapses. Typically presenting as slow-to-nongrowing cells, persisters are senescent or senescence-like cells. In this issue of Cancer Research, Ramponi and colleagues study mTOR/PI3K inhibitor-induced embryonic diapause-like arrest (DLA) as a model of persistence in lung cancer and melanoma cells and compare this persister condition with therapy-induced senescence in the same cells. The DLA phenotype recapitulated some but not all features attributed to senescent cells, lacking, for instance, an inflammatory secretome otherwise known as the senescence-associated secretory phenotype. A CRISPR dropout screen pointed to methyl group-providing one-carbon metabolism and further to H4K20me3-mediated repression of senescence-associated secretory phenotype-related IFN response genes selectively in DLA-like persister cells. Conversely, inhibition of H4K20-active KMT5B/C methyltransferases derepressed inflammatory programs and was toxic in DLA cells. These findings not only suggest exploitable vulnerabilities of DLA-like persister cells but also unveil general technical and conceptual challenges of cultured multipassage cell line-based persister studies. Collectively, the approach chosen and insights obtained will stimulate a productive scientific debate on senescence-like features and their reversibility across drug-tolerant persister cells. See related article by Ramponi et al., p. 32.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"85 1","pages":"7-9"},"PeriodicalIF":12.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-24-3744","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Therapy-exposed surviving cancer cells may have encountered profound epigenetic remodeling that renders these drug-tolerant persisters candidate drivers of particularly aggressive relapses. Typically presenting as slow-to-nongrowing cells, persisters are senescent or senescence-like cells. In this issue of Cancer Research, Ramponi and colleagues study mTOR/PI3K inhibitor-induced embryonic diapause-like arrest (DLA) as a model of persistence in lung cancer and melanoma cells and compare this persister condition with therapy-induced senescence in the same cells. The DLA phenotype recapitulated some but not all features attributed to senescent cells, lacking, for instance, an inflammatory secretome otherwise known as the senescence-associated secretory phenotype. A CRISPR dropout screen pointed to methyl group-providing one-carbon metabolism and further to H4K20me3-mediated repression of senescence-associated secretory phenotype-related IFN response genes selectively in DLA-like persister cells. Conversely, inhibition of H4K20-active KMT5B/C methyltransferases derepressed inflammatory programs and was toxic in DLA cells. These findings not only suggest exploitable vulnerabilities of DLA-like persister cells but also unveil general technical and conceptual challenges of cultured multipassage cell line-based persister studies. Collectively, the approach chosen and insights obtained will stimulate a productive scientific debate on senescence-like features and their reversibility across drug-tolerant persister cells. See related article by Ramponi et al., p. 32.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.