A Family of Transglutaminases Is Essential for the Development of Appressorium-Like Structures and Phytophthora infestans Virulence in Potato.

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Phytopathology Pub Date : 2025-01-02 DOI:10.1094/PHYTO-03-24-0107-R
Maja Brus-Szkalej, Bradley Dotson, Christian B Andersen, Ramesh R Vetukuri, Laura J Grenville-Briggs
{"title":"A Family of Transglutaminases Is Essential for the Development of Appressorium-Like Structures and <i>Phytophthora infestans</i> Virulence in Potato.","authors":"Maja Brus-Szkalej, Bradley Dotson, Christian B Andersen, Ramesh R Vetukuri, Laura J Grenville-Briggs","doi":"10.1094/PHYTO-03-24-0107-R","DOIUrl":null,"url":null,"abstract":"<p><p>Transglutaminases (TGases) are enzymes highly conserved among prokaryotic and eukaryotic organisms, where their role is to catalyze protein cross-linking. One of the putative TGases of <i>Phytophthora infestans</i> has previously been shown to be localized to the cell wall. Based on sequence similarity we were able to identify six more genes annotated as putative TGases and show that these seven genes group together in phylogenetic analysis. These seven proteins are predicted to contain both a TGase domain and a MANSC domain, the latter of which was previously shown to play a role in protein stability. Chemical inhibition of transglutaminase activity and silencing of the entire family of the putative cell wall TGases are both lethal to <i>P. infestans</i> indicating the importance of these proteins in cell wall formation and stability. The intermediate phenotype obtained with lower drug concentrations and less efficient silencing displays a number of deformations to germ tubes and appressoria. Both chemically treated and silenced lines show lower virulence than the wild type in leaf infection assays. Finally, we show that appressoria of <i>P. infestans</i> possess the ability to build up turgor pressure and that this ability is decreased by chemical inhibition of TGases.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-03-24-0107-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Transglutaminases (TGases) are enzymes highly conserved among prokaryotic and eukaryotic organisms, where their role is to catalyze protein cross-linking. One of the putative TGases of Phytophthora infestans has previously been shown to be localized to the cell wall. Based on sequence similarity we were able to identify six more genes annotated as putative TGases and show that these seven genes group together in phylogenetic analysis. These seven proteins are predicted to contain both a TGase domain and a MANSC domain, the latter of which was previously shown to play a role in protein stability. Chemical inhibition of transglutaminase activity and silencing of the entire family of the putative cell wall TGases are both lethal to P. infestans indicating the importance of these proteins in cell wall formation and stability. The intermediate phenotype obtained with lower drug concentrations and less efficient silencing displays a number of deformations to germ tubes and appressoria. Both chemically treated and silenced lines show lower virulence than the wild type in leaf infection assays. Finally, we show that appressoria of P. infestans possess the ability to build up turgor pressure and that this ability is decreased by chemical inhibition of TGases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个转谷氨酰胺酶家族对马铃薯中类似于附属物的结构的发育和 Phytophthora infestans 的毒力是必不可少的。
谷氨酰胺转胺酶(TGases)是一种在原核生物和真核生物中高度保守的酶,其作用是催化蛋白质交联。其中一种推测的致病菌已被证明定位于细胞壁。基于序列相似性,我们能够鉴定出另外6个被注释为假定tgase的基因,并表明这7个基因在系统发育分析中聚在一起。这7种蛋白被预测同时包含TGase结构域和MANSC结构域,后者在之前被证明在蛋白质稳定性中起作用。转谷氨酰胺酶活性的化学抑制和整个细胞壁tgase家族的沉默对P. infestans都是致命的,这表明这些蛋白在细胞壁形成和稳定性中的重要性。较低药物浓度和较低效率的沉默所获得的中间表型显示出胚管和附着胞的许多变形。在叶片侵染试验中,化学处理系和沉默系的毒力均低于野生型。最后,我们表明,附着胞具有建立膨胀压力的能力,而这种能力被化学抑制的tgase降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
期刊最新文献
Functional Characterization of Transcriptional Regulator Rem in Candidatus Liberibacter asiaticus. Harnessing the Power of Electrical Penetration Graph (EPG) Technology to Understand Psyllid-Transmitted Fastidious Bacterial Diseases. Patulin Inhibition of Specific Apple Microbiome Members Uncovers Hanseniaspora uvarum as a Potential Biocontrol Agent. Dispersal of Colletotrichum acutatum Sensu Lato Conidia from Infected Citrus and Strawberry Under Simulated Rainfall and Different Laminar and Turbulent Wind Speeds. Relationship Between the Distribution of the Pinewood Nematode (Bursaphelenchus xylophilus) and the Development of Xylem Embolism in the Stems of Japanese Black Pine (Pinus thunbergii) Seedlings Monitored by Magnetic Resonance Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1