RGVPSeg: multimodal information fusion network for retinogeniculate visual pathway segmentation.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Medical & Biological Engineering & Computing Pub Date : 2025-01-02 DOI:10.1007/s11517-024-03248-z
Qingrun Zeng, Lin Yang, Yongqiang Li, Lei Xie, Yuanjing Feng
{"title":"RGVPSeg: multimodal information fusion network for retinogeniculate visual pathway segmentation.","authors":"Qingrun Zeng, Lin Yang, Yongqiang Li, Lei Xie, Yuanjing Feng","doi":"10.1007/s11517-024-03248-z","DOIUrl":null,"url":null,"abstract":"<p><p>The segmentation of the retinogeniculate visual pathway (RGVP) enables quantitative analysis of its anatomical structure. Multimodal learning has exhibited considerable potential in segmenting the RGVP based on structural MRI (sMRI) and diffusion MRI (dMRI). However, the intricate nature of the skull base environment and the slender morphology of the RGVP pose challenges for existing methodologies to adequately leverage the complementary information from each modality. In this study, we propose a multimodal information fusion network designed to optimize and select the complementary information across multiple modalities: the T1-weighted (T1w) images, the fractional anisotropy (FA) images, and the fiber orientation distribution function (fODF) peaks, and the modalities can supervise each other during the process. Specifically, we add a supervised master-assistant cross-modal learning framework between the encoder layers of different modalities so that the characteristics of different modalities can be more fully utilized to achieve a more accurate segmentation result. We apply RGVPSeg to an MRI dataset with 102 subjects from the Human Connectome Project (HCP) and 10 subjects from Multi-shell Diffusion MRI (MDM), the experimental results show promising results, which demonstrate that the proposed framework is feasible and outperforms the methods mentioned in this paper. Our code is freely available at https://github.com/yanglin9911/RGVPSeg .</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03248-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The segmentation of the retinogeniculate visual pathway (RGVP) enables quantitative analysis of its anatomical structure. Multimodal learning has exhibited considerable potential in segmenting the RGVP based on structural MRI (sMRI) and diffusion MRI (dMRI). However, the intricate nature of the skull base environment and the slender morphology of the RGVP pose challenges for existing methodologies to adequately leverage the complementary information from each modality. In this study, we propose a multimodal information fusion network designed to optimize and select the complementary information across multiple modalities: the T1-weighted (T1w) images, the fractional anisotropy (FA) images, and the fiber orientation distribution function (fODF) peaks, and the modalities can supervise each other during the process. Specifically, we add a supervised master-assistant cross-modal learning framework between the encoder layers of different modalities so that the characteristics of different modalities can be more fully utilized to achieve a more accurate segmentation result. We apply RGVPSeg to an MRI dataset with 102 subjects from the Human Connectome Project (HCP) and 10 subjects from Multi-shell Diffusion MRI (MDM), the experimental results show promising results, which demonstrate that the proposed framework is feasible and outperforms the methods mentioned in this paper. Our code is freely available at https://github.com/yanglin9911/RGVPSeg .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RGVPSeg:基于多模态信息融合网络的视网膜回状视觉通路分割。
视网膜原状视通路(RGVP)的分割使其解剖结构的定量分析成为可能。基于结构磁共振成像(sMRI)和扩散磁共振成像(dMRI)的多模态学习在分割RGVP方面显示出相当大的潜力。然而,颅底环境的复杂性质和RGVP的细长形态对现有方法提出了挑战,无法充分利用每种模式的互补信息。在这项研究中,我们提出了一个多模态信息融合网络,旨在优化和选择多个模态之间的互补信息:t1加权(T1w)图像、分数各向异性(FA)图像和纤维取向分布函数(fODF)峰,并且在此过程中模态可以相互监督。具体来说,我们在不同模态的编码器层之间增加了一个有监督的主-辅助跨模态学习框架,以便更充分地利用不同模态的特征,从而获得更准确的分割结果。我们将RGVPSeg应用于人类连接组项目(Human Connectome Project, HCP)的102名受试者和多壳扩散MRI (Multi-shell Diffusion MRI, MDM)的10名受试者的MRI数据集,实验结果显示了令人乐观的结果,证明了所提出的框架是可行的,并且优于本文提到的方法。我们的代码可以在https://github.com/yanglin9911/RGVPSeg上免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
期刊最新文献
LGENet: disentangle anatomy and pathology features for late gadolinium enhancement image segmentation. M4S-Net: a motion-enhanced shape-aware semi-supervised network for echocardiography sequence segmentation. Deep learning for retinal vessel segmentation: a systematic review of techniques and applications. TongueTransUNet: toward effective tongue contour segmentation using well-managed dataset. Drug repositioning based on mutual information for the treatment of Alzheimer's disease patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1