Agricultural subsoil microbiomes and functions exhibit lower resistance to global change than topsoils in Chinese agroecosystems

Ziheng Peng, Marcel G. A. van der Heijden, Yu Liu, Xiaomeng Li, Haibo Pan, Yining An, Hang Gao, Jiejun Qi, Jiamin Gao, Xun Qian, James M. Tiedje, Gehong Wei, Shuo Jiao
{"title":"Agricultural subsoil microbiomes and functions exhibit lower resistance to global change than topsoils in Chinese agroecosystems","authors":"Ziheng Peng, Marcel G. A. van der Heijden, Yu Liu, Xiaomeng Li, Haibo Pan, Yining An, Hang Gao, Jiejun Qi, Jiamin Gao, Xun Qian, James M. Tiedje, Gehong Wei, Shuo Jiao","doi":"10.1038/s43016-024-01106-7","DOIUrl":null,"url":null,"abstract":"<p>Soils play a critical role in supporting agricultural production. Subsoils, below 20 cm, underpin fundamental agroecosystem sustainability traits including soil carbon storage, climate regulation and water provision. However, little is known about the ecological stability of subsoils in response to global change. Here we conducted a microcosm experiment to determine whether subsoils were more sensitive to global changes across 40 agricultural ecosystems in China, in combination with a multiple global change factor experiment and an in situ field study. We found that subsoils exhibited greater fluctuation in species diversity, community composition, and complexity of microbial networks and ecosystem functions than topsoils, indicating lower resistance to global changes. Soil biodiversity was a major driver of ecosystem resistance, surpassing climate and soil parameters. A reciprocal microorganism transplant experiment showed that microorganisms isolated from the topsoil are more resistant to global changes than those from subsoil. Our study emphasizes that subsoil ecosystems are sensitive to global changes, underscoring the importance of including subsoils in predictions of agricultural sustainability and crop productivity under changing environmental conditions.</p>","PeriodicalId":19090,"journal":{"name":"Nature Food","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43016-024-01106-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Soils play a critical role in supporting agricultural production. Subsoils, below 20 cm, underpin fundamental agroecosystem sustainability traits including soil carbon storage, climate regulation and water provision. However, little is known about the ecological stability of subsoils in response to global change. Here we conducted a microcosm experiment to determine whether subsoils were more sensitive to global changes across 40 agricultural ecosystems in China, in combination with a multiple global change factor experiment and an in situ field study. We found that subsoils exhibited greater fluctuation in species diversity, community composition, and complexity of microbial networks and ecosystem functions than topsoils, indicating lower resistance to global changes. Soil biodiversity was a major driver of ecosystem resistance, surpassing climate and soil parameters. A reciprocal microorganism transplant experiment showed that microorganisms isolated from the topsoil are more resistant to global changes than those from subsoil. Our study emphasizes that subsoil ecosystems are sensitive to global changes, underscoring the importance of including subsoils in predictions of agricultural sustainability and crop productivity under changing environmental conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A reform of value-added taxes on foods can have health, environmental and economic benefits in Europe State-level policies alone are insufficient to meet the federal food waste reduction goal in the United States Food waste policy in the United States Integrated irrigation and nitrogen optimization is a resource-efficient adaptation strategy for US maize and soybean production Factors that drive unequal access to international grain markets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1