Michael L. Barsoum, Kira M. Fahy, William Morris, Vinayak P. Dravid, Benjamin Hernandez, Omar K. Farha
{"title":"The Road Ahead for Metal–Organic Frameworks: Current Landscape, Challenges and Future Prospects","authors":"Michael L. Barsoum, Kira M. Fahy, William Morris, Vinayak P. Dravid, Benjamin Hernandez, Omar K. Farha","doi":"10.1021/acsnano.4c14744","DOIUrl":null,"url":null,"abstract":"This perspective highlights the transformative potential of Metal–Organic Frameworks (MOFs) in environmental and healthcare sectors. It discusses work that has advanced beyond technology readiness levels of >4 including applications in capture, storage, and conversion of gases to value added products. This work showcases efforts in the most salient applications of MOFs which have been performed at a great cadence, enabled by the federal government, large companies, and startups to commercialize these technologies despite facing significant challenges. This article also forecasts the role of nanoscale MOFs in healthcare, including strides toward personalized medicine, advocating for their use in custom-tailored drug delivery systems. Finally we underscore the potential acceleration in MOF research and development through the integration of machine learning and AI, positioning MOFs as versatile tools poised to address global sustainability and health challenges.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"62 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c14744","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This perspective highlights the transformative potential of Metal–Organic Frameworks (MOFs) in environmental and healthcare sectors. It discusses work that has advanced beyond technology readiness levels of >4 including applications in capture, storage, and conversion of gases to value added products. This work showcases efforts in the most salient applications of MOFs which have been performed at a great cadence, enabled by the federal government, large companies, and startups to commercialize these technologies despite facing significant challenges. This article also forecasts the role of nanoscale MOFs in healthcare, including strides toward personalized medicine, advocating for their use in custom-tailored drug delivery systems. Finally we underscore the potential acceleration in MOF research and development through the integration of machine learning and AI, positioning MOFs as versatile tools poised to address global sustainability and health challenges.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.