Anisotropic Plasmon Resonance in Ti3C2Tx MXene Enables Site-Selective Plasmonic Catalysis

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-01-04 DOI:10.1021/acsnano.4c17316
Zhiyi Wu, Jiahui Shen, Zimu Li, Shuang Liu, Yuxuan Zhou, Kai Feng, Binbin Zhang, Shiqi Zhao, Di Xue, Jiari He, Kewei Yu, Jinpan Zhang, Graham Dawson, Qingfeng Zhang, Lizhen Huang, Chaoran Li, Xingda An, Lifeng Chi, Xiaohong Zhang, Le He
{"title":"Anisotropic Plasmon Resonance in Ti3C2Tx MXene Enables Site-Selective Plasmonic Catalysis","authors":"Zhiyi Wu, Jiahui Shen, Zimu Li, Shuang Liu, Yuxuan Zhou, Kai Feng, Binbin Zhang, Shiqi Zhao, Di Xue, Jiari He, Kewei Yu, Jinpan Zhang, Graham Dawson, Qingfeng Zhang, Lizhen Huang, Chaoran Li, Xingda An, Lifeng Chi, Xiaohong Zhang, Le He","doi":"10.1021/acsnano.4c17316","DOIUrl":null,"url":null,"abstract":"The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy. Both experimental and theoretical studies provide direct evidence of the occurrence of transverse and longitudinal dipolar plasmon resonance modes, respectively, driven by in-plane and out-of-plane vibrations of the two-dimensional (2D) MXene nanoflakes. Wavelength-controlled excitation of the two LSPR modes is demonstrated to activate either the on-edge or the in-plane active sites for plasmonic charge carrier-induced site-selective catalysis. Our findings uncover the presence as well as the mechanism of the anisotropic plasmon resonance in nonmetallic 2D nanomaterials and provide intriguing design principles for next-generation plasmonic nanocatalysts.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"11 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17316","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in Ti3C2Tx MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy. Both experimental and theoretical studies provide direct evidence of the occurrence of transverse and longitudinal dipolar plasmon resonance modes, respectively, driven by in-plane and out-of-plane vibrations of the two-dimensional (2D) MXene nanoflakes. Wavelength-controlled excitation of the two LSPR modes is demonstrated to activate either the on-edge or the in-plane active sites for plasmonic charge carrier-induced site-selective catalysis. Our findings uncover the presence as well as the mechanism of the anisotropic plasmon resonance in nonmetallic 2D nanomaterials and provide intriguing design principles for next-generation plasmonic nanocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Patterned Antigens on DNA Origami Controls the Structure and Cellular Uptake of Immune Complexes Nanoparticle Vaccine Triggers Interferon-Gamma Production and Confers Protective Immunity against Porcine Reproductive and Respiratory Syndrome Virus Immobile Integrin Signaling Transit and Relay Nodes Organize Mechanosignaling through Force-Dependent Phosphorylation in Focal Adhesions Targeted Covalent Nanodrugs Reinvigorate Antitumor Immunity and Kill Tumors via Improving Intratumoral Accumulation and Retention of Doxorubicin Increased Brightness and Reduced Efficiency Droop in Perovskite Quantum Dot Light-Emitting Diodes Using Carbazole-Based Phosphonic Acid Interface Modifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1