Autophagosomes coated in situ with nanodots act as personalized cancer vaccines

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature nanotechnology Pub Date : 2025-01-03 DOI:10.1038/s41565-024-01826-8
Wei-Qiang Huang, Wei You, Ya-Qi Zhu, Fan Gao, Zhi-Zhi Wu, Guang Chen, Jun Xiao, Qi Shao, Long-Hai Wang, Xuan Nie, Ze Zhang, Chun-Yan Hong, Ye-Zi You
{"title":"Autophagosomes coated in situ with nanodots act as personalized cancer vaccines","authors":"Wei-Qiang Huang, Wei You, Ya-Qi Zhu, Fan Gao, Zhi-Zhi Wu, Guang Chen, Jun Xiao, Qi Shao, Long-Hai Wang, Xuan Nie, Ze Zhang, Chun-Yan Hong, Ye-Zi You","doi":"10.1038/s41565-024-01826-8","DOIUrl":null,"url":null,"abstract":"<p>Autophagosome cancer vaccines can promote cross-presentation of multiple tumour antigens and induce cross-reactive T cell responses. However, so far, there is no effective method for obtaining a highly immunogenic autophagosomal cancer vaccine because autophagosomes, once formed, quickly fuse with lysosomes and cannot easily escape from cells. Here we report a functional Ti<sub>2</sub>NX nanodot that caps the autophagosome membrane lipid phosphatidylinositol-4-phosphate, blocking the fusion of autophagosomes with lysosomes and producing stable nanodot-coated autophagosomes in tumours. The formed nanodot-coated autophagosomes can escape from cancer cells to lymph nodes, where they activate tumour-specific T cells. We show that our approach reduces tumour burden and provide long-term immune surveillance protection for cured mice. This work provides a method for the direct formation of personalized autophagosome-based cancer vaccines in vivo, offering a promising strategy for tumour treatment.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"27 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-024-01826-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Autophagosome cancer vaccines can promote cross-presentation of multiple tumour antigens and induce cross-reactive T cell responses. However, so far, there is no effective method for obtaining a highly immunogenic autophagosomal cancer vaccine because autophagosomes, once formed, quickly fuse with lysosomes and cannot easily escape from cells. Here we report a functional Ti2NX nanodot that caps the autophagosome membrane lipid phosphatidylinositol-4-phosphate, blocking the fusion of autophagosomes with lysosomes and producing stable nanodot-coated autophagosomes in tumours. The formed nanodot-coated autophagosomes can escape from cancer cells to lymph nodes, where they activate tumour-specific T cells. We show that our approach reduces tumour burden and provide long-term immune surveillance protection for cured mice. This work provides a method for the direct formation of personalized autophagosome-based cancer vaccines in vivo, offering a promising strategy for tumour treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米点包裹的自噬体可作为个体化癌症疫苗
自噬体癌症疫苗可促进多种肿瘤抗原的交叉呈递并诱导交叉反应性T细胞反应。然而,迄今为止,由于自噬体一旦形成,迅速与溶酶体融合,不易从细胞中逃逸,尚无获得高免疫原性的自噬体癌疫苗的有效方法。在这里,我们报道了一个功能性的Ti2NX纳米点,它可以覆盖自噬体膜脂磷脂酰肌醇-4-磷酸,阻断自噬体与溶酶体的融合,并在肿瘤中产生稳定的纳米点包裹的自噬体。形成的纳米点包裹的自噬体可以从癌细胞逃到淋巴结,在那里它们激活肿瘤特异性T细胞。我们表明,我们的方法减少了肿瘤负担,并为治愈小鼠提供了长期的免疫监视保护。这项工作为在体内直接形成基于自噬体的个性化癌症疫苗提供了一种方法,为肿瘤治疗提供了一种有希望的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
KF
阿拉丁
Bortezomib
阿拉丁
dimethyl sulfoxide
阿拉丁
HCl solution
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
期刊最新文献
Systemic HER3 ligand-mimicking nanobioparticles enter the brain and reduce intracranial tumour growth Intermediate-range solvent templating and counterion behaviour at charged carbon nanotube surfaces Intracellular dehydrogenation catalysis leads to reductive stress and immunosuppression Momentum tunnelling across quantum barriers Grover’s algorithm in a four-qubit silicon processor above the fault-tolerant threshold
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1