Fangyu Liu, Olivier Mailhot, Isabella S. Glenn, Seth F. Vigneron, Violla Bassim, Xinyu Xu, Karla Fonseca-Valencia, Matthew S. Smith, Dmytro S. Radchenko, James S. Fraser, Yurii S. Moroz, John J. Irwin, Brian K. Shoichet
{"title":"The impact of library size and scale of testing on virtual screening","authors":"Fangyu Liu, Olivier Mailhot, Isabella S. Glenn, Seth F. Vigneron, Violla Bassim, Xinyu Xu, Karla Fonseca-Valencia, Matthew S. Smith, Dmytro S. Radchenko, James S. Fraser, Yurii S. Moroz, John J. Irwin, Brian K. Shoichet","doi":"10.1038/s41589-024-01797-w","DOIUrl":null,"url":null,"abstract":"<p>Virtual ligand libraries for ligand discovery have recently increased 10,000-fold. Whether this has improved hit rates and potencies has not been directly tested. Meanwhile, typically only dozens of docking hits are assayed, clouding hit-rate interpretation. Here we docked a 1.7 billion-molecule virtual library against β-lactamase, testing 1,521 new molecules and comparing the results to a 99 million-molecule screen where 44 molecules were tested. In a larger screen, hit rates improved twofold, more scaffolds were discovered and potency improved. Fifty-fold more inhibitors were found, supporting the idea that the large libraries harbor many more ligands than are being tested. In sampling smaller sets from the 1,521, hit rates only converged when several hundred molecules were tested. Hit rates and affinities improved steadily with docking score. It may be that as the scale of docking libraries and their testing grows, both ligands and our ability to rank them will improve.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"77 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01797-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Virtual ligand libraries for ligand discovery have recently increased 10,000-fold. Whether this has improved hit rates and potencies has not been directly tested. Meanwhile, typically only dozens of docking hits are assayed, clouding hit-rate interpretation. Here we docked a 1.7 billion-molecule virtual library against β-lactamase, testing 1,521 new molecules and comparing the results to a 99 million-molecule screen where 44 molecules were tested. In a larger screen, hit rates improved twofold, more scaffolds were discovered and potency improved. Fifty-fold more inhibitors were found, supporting the idea that the large libraries harbor many more ligands than are being tested. In sampling smaller sets from the 1,521, hit rates only converged when several hundred molecules were tested. Hit rates and affinities improved steadily with docking score. It may be that as the scale of docking libraries and their testing grows, both ligands and our ability to rank them will improve.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.