Yang Yang, Lina Sheng, Xueqing Hang, Jinyao Wang, Guocheng Kou, Yongli Ye, Jian Ji, Xiulan Sun
{"title":"Efficient Expression and Activity Optimization of Manganese Peroxidase for the Simultaneous Degradation of Aflatoxins AFB1, AFB2, AFG1, and AFG2","authors":"Yang Yang, Lina Sheng, Xueqing Hang, Jinyao Wang, Guocheng Kou, Yongli Ye, Jian Ji, Xiulan Sun","doi":"10.1021/acs.jafc.4c10047","DOIUrl":null,"url":null,"abstract":"Aflatoxins (AFs), notorious mycotoxins that pose significant risks to human and animal health, make biodegradation extremely crucial as they offer a promising approach to managing and reducing their harmful impacts. In this study, we identified a manganese peroxidase from <i>Punctularia strigosozonata</i> (<i>Ps</i>Mnp) through protein similarity analysis, which has the capability to degrade four AFs (AFB<sub>1</sub>, AFB<sub>2</sub>, AFG<sub>1</sub>, and AFG<sub>2</sub>) simultaneously. The gene encoding this enzyme was subject to codon optimization, followed by cold shock induction expression using the pColdII vector, leading to the soluble expression of manganese peroxidase (Mnp) in <i>Escherichia coli</i>. This study tackled the problem of inclusion body formation that often occurs during Mnp expression in <i>E. coli</i>. After optimizing the degradation conditions, the degradation rates for AFB<sub>1</sub>, AFB<sub>2</sub>, AFG<sub>1</sub>, and AFG<sub>2</sub> were 87.9, 72.8, 77.3, and 85.6%, respectively. Molecular docking and molecular dynamics simulations indicated that <i>Ps</i>Mnp facilitated the degradation of AFs through hydrophobic and polar interactions among various amino acid residues. This research offers novel insights into the rapid discovery of enzymes capable of degrading AFs and establishes a theoretical foundation for the efficient expression of mycotoxin detoxification enzymes.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"41 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c10047","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aflatoxins (AFs), notorious mycotoxins that pose significant risks to human and animal health, make biodegradation extremely crucial as they offer a promising approach to managing and reducing their harmful impacts. In this study, we identified a manganese peroxidase from Punctularia strigosozonata (PsMnp) through protein similarity analysis, which has the capability to degrade four AFs (AFB1, AFB2, AFG1, and AFG2) simultaneously. The gene encoding this enzyme was subject to codon optimization, followed by cold shock induction expression using the pColdII vector, leading to the soluble expression of manganese peroxidase (Mnp) in Escherichia coli. This study tackled the problem of inclusion body formation that often occurs during Mnp expression in E. coli. After optimizing the degradation conditions, the degradation rates for AFB1, AFB2, AFG1, and AFG2 were 87.9, 72.8, 77.3, and 85.6%, respectively. Molecular docking and molecular dynamics simulations indicated that PsMnp facilitated the degradation of AFs through hydrophobic and polar interactions among various amino acid residues. This research offers novel insights into the rapid discovery of enzymes capable of degrading AFs and establishes a theoretical foundation for the efficient expression of mycotoxin detoxification enzymes.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.