Dissecting the Molecular Structure of the Air/Ice Interface from Quantum Simulations of the Sum-Frequency Generation Spectrum

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-01-03 DOI:10.1021/jacs.4c14610
Richa Rashmi, Francesco Paesani
{"title":"Dissecting the Molecular Structure of the Air/Ice Interface from Quantum Simulations of the Sum-Frequency Generation Spectrum","authors":"Richa Rashmi, Francesco Paesani","doi":"10.1021/jacs.4c14610","DOIUrl":null,"url":null,"abstract":"Ice interfaces are pivotal in mediating key chemical and physical processes such as heterogeneous chemical reactions in the environment, ice nucleation, and cloud microphysics. At the ice surface, water molecules form a quasi-liquid layer (QLL) with properties distinct from those of the bulk. Despite numerous experimental and theoretical studies, a molecular-level understanding of the QLL has remained elusive. In this work, we use state-of-the-art quantum dynamics simulations with a realistic data-driven many-body potential to dissect the vibrational sum-frequency generation (vSFG) spectrum of the air/ice interface in terms of contributions arising from individual molecular layers, orientations, and hydrogen-bonding topologies that determine the QLL properties. The agreement between experimental and simulated spectra provides a realistic molecular picture of the evolution of the QLL as a function of the temperature without the need for empirical adjustments. The emergence of specific features in the experimental vSFG spectrum suggests that surface restructuring may occur at lower temperatures. This work not only underscores the critical role of many-body interactions and nuclear quantum effects in understanding ice surfaces but also provides a definitive molecular-level picture of the QLL, which plays a central role in multiphase and heterogeneous processes of relevance to a range of fields, including atmospheric chemistry, cryopreservation, and materials science.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"34 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14610","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ice interfaces are pivotal in mediating key chemical and physical processes such as heterogeneous chemical reactions in the environment, ice nucleation, and cloud microphysics. At the ice surface, water molecules form a quasi-liquid layer (QLL) with properties distinct from those of the bulk. Despite numerous experimental and theoretical studies, a molecular-level understanding of the QLL has remained elusive. In this work, we use state-of-the-art quantum dynamics simulations with a realistic data-driven many-body potential to dissect the vibrational sum-frequency generation (vSFG) spectrum of the air/ice interface in terms of contributions arising from individual molecular layers, orientations, and hydrogen-bonding topologies that determine the QLL properties. The agreement between experimental and simulated spectra provides a realistic molecular picture of the evolution of the QLL as a function of the temperature without the need for empirical adjustments. The emergence of specific features in the experimental vSFG spectrum suggests that surface restructuring may occur at lower temperatures. This work not only underscores the critical role of many-body interactions and nuclear quantum effects in understanding ice surfaces but also provides a definitive molecular-level picture of the QLL, which plays a central role in multiphase and heterogeneous processes of relevance to a range of fields, including atmospheric chemistry, cryopreservation, and materials science.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Electrochemical Reduction of CO2 to CH3OH Catalyzed by an Iron Porphyrinoid Dissecting the Molecular Structure of the Air/Ice Interface from Quantum Simulations of the Sum-Frequency Generation Spectrum DNA Tetrahedron-Driven Multivalent Proteolysis-Targeting Chimeras: Enhancing Protein Degradation Efficiency and Tumor Targeting Precise Preparation of Size-Uniform Two-Dimensional Platelet Micelles Through Crystallization-Assisted Rapid Microphase Separation Using All-Bottlebrush-Type Block Copolymers with Crystalline Side Chains Near-Infrared Magnetic Circularly Polarized Luminescence and Slow Magnetic Relaxation in a Tetrazinyl-Bridged Erbium Metallocene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1