Development of a portable gas chromatograph–mass spectrometer embedded with a low-temperature adsorption thermal desorption module for enhanced detection of volatile organic compounds

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analyst Pub Date : 2025-01-03 DOI:10.1039/d4an01484g
Yulin Chen, Junwei Qiu, Kai Xu, Huijun Zhu, Shuo Zhang, Xinxin Lu, Xiaoxu Li
{"title":"Development of a portable gas chromatograph–mass spectrometer embedded with a low-temperature adsorption thermal desorption module for enhanced detection of volatile organic compounds","authors":"Yulin Chen, Junwei Qiu, Kai Xu, Huijun Zhu, Shuo Zhang, Xinxin Lu, Xiaoxu Li","doi":"10.1039/d4an01484g","DOIUrl":null,"url":null,"abstract":"A portable gas chromatograph–mass spectrometer (GC-MS) is an effective instrument for rapid on-site detection of volatile organic compounds (VOCs). Current instruments typically adsorb samples at ambient temperature, challenging the detection of low-boiling VOCs. In this study, a low-temperature adsorption thermal desorption method is proposed for sample enrichment in a portable GC-MS. The refrigeration module adopts a thermoelectric cooler (TEC), and a heating wire directly heats the adsorption tube to reduce the heat capacity. The miniaturization and low-power design make this module integrable into portable GC-MS devices. This module can reduce the temperature to around 0 °C within ten minutes for sample enrichment, and the heating system can increase the temperature to 260 °C within 20 seconds to ensure rapid desorption and injection of samples. Due to the miniaturization design, the total weight of the portable GC-MS is 21.7 kg, and the volume is 48 cm × 38 cm × 17 cm. Within merely 10 minutes, it completely separated and detected 65 VOCs in the TO-15 standard substance, with a detection limit down to 0.12 μg L<small><sup>−1</sup></small> for toluene. The detection performance for low-boiling substances could be enhanced by up to 17 times compared to ambient temperature adsorption thermal desorption, such as 1,3-butadiene. Moreover, the results demonstrated long-term stability (RSD &lt; 10% for 98% of the substances, with recovery rates from 91.66% to 109.12%). This study provides a feasible strategy for the rapid and reliable detection of VOCs in the air, holding great potential in the field of environmental monitoring.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"2 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4an01484g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A portable gas chromatograph–mass spectrometer (GC-MS) is an effective instrument for rapid on-site detection of volatile organic compounds (VOCs). Current instruments typically adsorb samples at ambient temperature, challenging the detection of low-boiling VOCs. In this study, a low-temperature adsorption thermal desorption method is proposed for sample enrichment in a portable GC-MS. The refrigeration module adopts a thermoelectric cooler (TEC), and a heating wire directly heats the adsorption tube to reduce the heat capacity. The miniaturization and low-power design make this module integrable into portable GC-MS devices. This module can reduce the temperature to around 0 °C within ten minutes for sample enrichment, and the heating system can increase the temperature to 260 °C within 20 seconds to ensure rapid desorption and injection of samples. Due to the miniaturization design, the total weight of the portable GC-MS is 21.7 kg, and the volume is 48 cm × 38 cm × 17 cm. Within merely 10 minutes, it completely separated and detected 65 VOCs in the TO-15 standard substance, with a detection limit down to 0.12 μg L−1 for toluene. The detection performance for low-boiling substances could be enhanced by up to 17 times compared to ambient temperature adsorption thermal desorption, such as 1,3-butadiene. Moreover, the results demonstrated long-term stability (RSD < 10% for 98% of the substances, with recovery rates from 91.66% to 109.12%). This study provides a feasible strategy for the rapid and reliable detection of VOCs in the air, holding great potential in the field of environmental monitoring.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: "Analyst" journal is the home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences.
期刊最新文献
Real-time Microbial Growth Curve (RMGC) system: An Improved Microplate Reader with a Graphical Interface for Automatic and High-throughput Monitoring of Microbial Growth Curves Voltammetry of monovalent cations at the 2D/3D water interface formed by using a slitlike graphene-membrane nanofluidic device Development of a portable gas chromatograph–mass spectrometer embedded with a low-temperature adsorption thermal desorption module for enhanced detection of volatile organic compounds Self-service aptamer-free molecularly imprinted paper-based sensor for high-sensitivity visual detection of influenza H5N1 Selectively aggregating natural ligands into efficient AIEgens by human telomeric duplex-G-quadruplex junction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1