Copper nanocubes as low-cost enzyme mimics in a sarcosine-sensing reaction cascade

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analyst Pub Date : 2025-02-11 DOI:10.1039/d4an01242a
Anuja Tripathi, Mark P. Styczynski
{"title":"Copper nanocubes as low-cost enzyme mimics in a sarcosine-sensing reaction cascade","authors":"Anuja Tripathi, Mark P. Styczynski","doi":"10.1039/d4an01242a","DOIUrl":null,"url":null,"abstract":"The development of simple, inexpensive, deployable clinical diagnostics could have a global impact on public health by making measurements of patient health status more widely accessible to patients regardless of socioeconomic status. Here, we report a novel biosensor for sarcosine using a colorimetric readout created by a hybrid catalyst system using copper nanocubes and the enzyme sarcosine oxidase. The enzyme catalyzes the reaction of sarcosine to generate H2O2, which the copper nanocubes then use as a substrate to create free radicals that convert colorless 3,3′,5,5′-tetramethylbenzidine (TMB) to its blue, oxidized form. The sensor showed good substrate affinity for Cu nanocubes and yielded a wide linear response range (0-140 µM) for sarcosine detection, with high selectivity against various interfering species. The limit of detection and limit of quantification were found to be 1.43 µM and 4.7 μM, respectively. We showed that the biosensor maintains function in a complex serum sample matrix, suggesting potential utility in clinical applications. Finally, we demonstrated a prototype based on light emitting diodes (LEDs) and light-dependent resistor (LDR) for unambiguous visual interpretation using an inexpensive microcontroller potentially suitable for use outside of traditional clinical or analytical laboratories.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"19 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4an01242a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of simple, inexpensive, deployable clinical diagnostics could have a global impact on public health by making measurements of patient health status more widely accessible to patients regardless of socioeconomic status. Here, we report a novel biosensor for sarcosine using a colorimetric readout created by a hybrid catalyst system using copper nanocubes and the enzyme sarcosine oxidase. The enzyme catalyzes the reaction of sarcosine to generate H2O2, which the copper nanocubes then use as a substrate to create free radicals that convert colorless 3,3′,5,5′-tetramethylbenzidine (TMB) to its blue, oxidized form. The sensor showed good substrate affinity for Cu nanocubes and yielded a wide linear response range (0-140 µM) for sarcosine detection, with high selectivity against various interfering species. The limit of detection and limit of quantification were found to be 1.43 µM and 4.7 μM, respectively. We showed that the biosensor maintains function in a complex serum sample matrix, suggesting potential utility in clinical applications. Finally, we demonstrated a prototype based on light emitting diodes (LEDs) and light-dependent resistor (LDR) for unambiguous visual interpretation using an inexpensive microcontroller potentially suitable for use outside of traditional clinical or analytical laboratories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: "Analyst" journal is the home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences.
期刊最新文献
Correction: Infrared spectromicroscopy of biochemistry in functional single cells Shifted-excitation Raman difference spectroscopy and charge-shifting detection coupled with spatially offset Raman spectroscopy for heritage science Dual Proximity Ligation Mediated Chain Extension and Displacement Assisted Signal Cycles for Sensitive and Accurate Methicillin-Resistant Staphylococcus Aureus (MRSA) Detection Facile fabrication of anti-fouling polymeric membrane potentiometric ion sensors based on biocide 1,2-dichloro-4-octylisothiazolin-3-one-containing self-adhesive waterborne polyurethane coatings Copper nanocubes as low-cost enzyme mimics in a sarcosine-sensing reaction cascade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1